These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 30141574)

  • 21. Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications.
    Samad YA; Li Y; Schiffer A; Alhassan SM; Liao K
    Small; 2015 May; 11(20):2380-5. PubMed ID: 25620784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets.
    Rinaldi A; Tamburrano A; Fortunato M; Sarto MS
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range.
    Tian H; Shu Y; Wang XF; Mohammad MA; Bie Z; Xie QY; Li C; Mi WT; Yang Y; Ren TL
    Sci Rep; 2015 Feb; 5():8603. PubMed ID: 25721159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures.
    Nautiyal P; Boesl B; Agarwal A
    Small; 2017 Mar; 13(10):. PubMed ID: 28026152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene-coated polymer foams as tuneable impact sensors.
    Boland CS; Khan U; Binions M; Barwich S; Boland JB; Weaire D; Coleman JN
    Nanoscale; 2018 Mar; 10(11):5366-5375. PubMed ID: 29509201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors.
    Zhao L; Qiang F; Dai SW; Shen SC; Huang YZ; Huang NJ; Zhang GD; Guan LZ; Gao JF; Song YH; Tang LC
    Nanoscale; 2019 May; 11(21):10229-10238. PubMed ID: 31049502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymer Foam-Supported Chemically Reduced Graphene Oxide Conductive Networks for Gas Sensing.
    Song J; Wang Y; Zhang F; Ye Y; Liu Y; Zhou X; Chen L; Peng C
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2965-2970. PubMed ID: 29442981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-step One-pot Synthesis of Graphene Foam/TiO
    Wang W; Wang Z; Liu J; Zhang Z; Sun L
    Sci Rep; 2017 Mar; 7():43755. PubMed ID: 28251998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flame-retardant superhydrophobic coating derived from fly ash on polymeric foam for efficient oil/corrosive water and emulsion separation.
    Wang J; Wang H; Geng G
    J Colloid Interface Sci; 2018 Sep; 525():11-20. PubMed ID: 29679796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites.
    Zeng Z; Seyed Shahabadi SI; Che B; Zhang Y; Zhao C; Lu X
    Nanoscale; 2017 Nov; 9(44):17396-17404. PubMed ID: 29099142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic graphene foam for efficient adsorption of oil and organic solvents.
    Yang S; Chen L; Mu L; Ma PC
    J Colloid Interface Sci; 2014 Sep; 430():337-44. PubMed ID: 24974246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures.
    Zhao K; Zhang T; Chang H; Yang Y; Xiao P; Zhang H; Li C; Tiwary CS; Ajayan PM; Chen Y
    Sci Adv; 2019 Apr; 5(4):eaav2589. PubMed ID: 30993202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.
    Embrey L; Nautiyal P; Loganathan A; Idowu A; Boesl B; Agarwal A
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39717-39727. PubMed ID: 29068220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
    Pan D; Wang C; Wang TC; Yao Y
    ACS Nano; 2017 Sep; 11(9):8988-8997. PubMed ID: 28825792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.
    Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS
    Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene Foam: Hole-Flake Network for Uniaxial Supercompression and Recovery Behavior.
    Pan D; Wang C; Wang X
    ACS Nano; 2018 Nov; 12(11):11491-11502. PubMed ID: 30394082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green Synthesis of Porous Three-Dimensional Nitrogen-Doped Graphene Foam for Electrochemical Applications.
    Yu H; Ye D; Butburee T; Wang L; Dargusch M
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2505-10. PubMed ID: 26744920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites.
    Liu W; Li J; Feng K; Sy A; Liu Y; Lim L; Lui G; Tjandra R; Rasenthiram L; Chiu G; Yu A
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25941-25953. PubMed ID: 27627198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture.
    Han X; Yang Z; Zhao B; Zhu S; Zhou L; Dai J; Kim JW; Liu B; Connell JW; Li T; Yang B; Lin Y; Hu L
    ACS Nano; 2017 Mar; 11(3):3189-3197. PubMed ID: 28263560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure.
    Wang C; Yang S; Wang Q; Wang Z; Zhang J
    Nanotechnology; 2008 Jun; 19(22):225709. PubMed ID: 21825776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.