BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30141613)

  • 1. Novel Sanger's Reagent-like Styrene Polymer for the Immobilization of Burkholderia cepacia Lipase.
    Fu J; Wang Z; Luo W; Xing S; Lv P; Wang Z; Yuan Z
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):30973-30982. PubMed ID: 30141613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases.
    Silva MVC; Aguiar LG; de Castro HF; Freitas L
    World J Microbiol Biotechnol; 2018 Nov; 34(11):169. PubMed ID: 30406564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent-bonded immobilization of lipase on poly(phenylene sulfide) dendrimers and their hydrolysis ability.
    Yemul O; Imae T
    Biomacromolecules; 2005; 6(5):2809-14. PubMed ID: 16153122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase.
    Ghadi A; Tabandeh F; Mahjoub S; Mohsenifar A; Roshan FT; Alavije RS
    J Oleo Sci; 2015; 64(4):423-30. PubMed ID: 25833452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde.
    Dizge N; Keskinler B; Tanriseven A
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):34-8. PubMed ID: 18571389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer.
    Yilmaz E; Sezgin M
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1927-40. PubMed ID: 22383051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burkholderia cepacia lipase immobilization for hydrolytic reactions and the kinetic resolution of the non-equimolar mixtures of isomeric alcohols.
    Hrydziuszko Z; Strub DJ; Labus K; Bryjak J
    Bioorg Chem; 2019 Dec; 93():102745. PubMed ID: 30691728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving activity and enantioselectivity of lipase via immobilization on macroporous resin for resolution of racemic 1- phenylethanol in non-aqueous medium.
    Li X; Huang S; Xu L; Yan Y
    BMC Biotechnol; 2013 Oct; 13():92. PubMed ID: 24168516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipase entrapment in protamine-induced bio-zirconia particles: characterization and application to the resolution of (R,S)-1-phenylethanol.
    Wang JY; Ma CL; Bao YM; Xu PS
    Enzyme Microb Technol; 2012 Jun; 51(1):40-6. PubMed ID: 22579389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic resolution of 1,2-diols using immobilized Burkholderia cepacia lipase: A combined experimental and molecular dynamics investigation.
    Mathpati AC; Vyas VK; Bhanage BM
    J Biotechnol; 2017 Nov; 262():1-10. PubMed ID: 28958793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid Nano-biofibrils as a New Nano-Scaffold for Lipase Immobilization.
    Vaziri S; Fazilati M; Arasteh A; Nazem H
    Protein Pept Lett; 2018; 25(9):862-870. PubMed ID: 30207215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical ZIF-8 toward Immobilizing
    Adnan M; Li K; Wang J; Xu L; Yan Y
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29747462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles.
    Zhang C; Dong X; Guo Z; Sun Y
    J Colloid Interface Sci; 2018 Jun; 519():145-153. PubMed ID: 29494877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening and immobilization Burkholderia sp. GXU56 lipase for enantioselective resolution of (R,S)-methyl mandelate.
    Wei HN; Wu B
    Appl Biochem Biotechnol; 2008 Apr; 149(1):79-88. PubMed ID: 18350389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification.
    Jiang C; Cheng C; Hao M; Wang H; Wang Z; Shen C; Cheong LZ
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):1328-1336. PubMed ID: 28768186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis.
    Li K; Fan Y; He Y; Zeng L; Han X; Yan Y
    Sci Rep; 2017 Nov; 7(1):16473. PubMed ID: 29184106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue.
    Alves NR; Pereira MM; Giordano RLC; Tardioli PW; Lima ÁS; Soares CMF; Souza RL
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):57-66. PubMed ID: 32767112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.
    Badgujar KC; Bhanage BM
    J Phys Chem B; 2014 Dec; 118(51):14808-19. PubMed ID: 25474503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol.
    Han H; Zhou Y; Li S; Wang Y; Kong XZ
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25714-25724. PubMed ID: 27618157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.
    Sóti PL; Weiser D; Vigh T; Nagy ZK; Poppe L; Marosi G
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):449-59. PubMed ID: 26724947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.