These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30142203)

  • 21. Consistency of Suspended Particulate Matter Concentration in Turbid Water Retrieved from Sentinel-2 MSI and Landsat-8 OLI Sensors.
    Wang H; Wang J; Cui Y; Yan S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33670917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery.
    Ren J; Zheng Z; Li Y; Lv G; Wang Q; Lyu H; Huang C; Liu G; Du C; Mu M; Lei S; Bi S
    Sci Total Environ; 2018 Jun; 625():1554-1566. PubMed ID: 29996452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters.
    Pahlevan N; Roger JC; Ahmad Z
    Opt Express; 2017 Mar; 25(6):6015-6035. PubMed ID: 28380959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images.
    Watanabe FS; Alcântara E; Rodrigues TW; Imai NN; Barbosa CC; Rotta LH
    Int J Environ Res Public Health; 2015 Aug; 12(9):10391-417. PubMed ID: 26322489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atmospheric correction of HJ-1 CCD imagery over turbid lake waters.
    Zhang M; Tang J; Dong Q; Duan H; Shen Q
    Opt Express; 2014 Apr; 22(7):7906-24. PubMed ID: 24718166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.
    Ruddick KG; Ovidio F; Rijkeboer M
    Appl Opt; 2000 Feb; 39(6):897-912. PubMed ID: 18337965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters.
    Soppa MA; Silva B; Steinmetz F; Keith D; Scheffler D; Bohn N; Bracher A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.
    Wang M; Shi W; Jiang L; Voss K
    Opt Express; 2016 Sep; 24(18):20437-53. PubMed ID: 27607649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated SWIR based empirical sun glint correction of Landsat 8-OLI data over coastal turbid water.
    Zorrilla NA; Vantrepotte V; Ngoc DD; Huybrechts N; Gardel A
    Opt Express; 2019 Apr; 27(8):A294-A318. PubMed ID: 31052884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring of wetland turbidity using multi-temporal Landsat-8 and Landsat-9 satellite imagery in the Bisalpur wetland, Rajasthan, India.
    Singh R; Saritha V; Pande CB
    Environ Res; 2024 Jan; 241():117638. PubMed ID: 37972812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.
    Wang M
    Opt Express; 2016 May; 24(11):12414-29. PubMed ID: 27410156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.
    Nguyen HC; Jung J; Lee J; Choi SU; Hong SY; Heo J
    Sensors (Basel); 2015 Jul; 15(8):18865-86. PubMed ID: 26263996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response.
    Gordon HR
    Appl Opt; 1995 Dec; 34(36):8363-74. PubMed ID: 21068957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era.
    Frouin RJ; Franz BA; Ibrahim A; Knobelspiesse K; Ahmad Z; Cairns B; Chowdhary J; Dierssen HM; Tan J; Dubovik O; Huang X; Davis AB; Kalashnikova O; Thompson DR; Remer LA; Boss E; Coddington O; Deschamps PY; Gao BC; Gross L; Hasekamp O; Omar A; Pelletier B; Ramon D; Steinmetz F; Zhai PW
    Front Earth Sci (Lausanne); 2019; 7():. PubMed ID: 32440515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods.
    Harkort L; Duan Z
    Water Res; 2023 Feb; 229():119478. PubMed ID: 36527868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting, extracting, and mapping of inland surface water using Landsat 8 Operational Land Imager: A case study of Pune district, India.
    Kulkarni R; Khare K; Khanum H
    F1000Res; 2022; 11():774. PubMed ID: 36704046
    [No Abstract]   [Full Text] [Related]  

  • 38. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.
    He X; Bai Y; Pan D; Tang J; Wang D
    Opt Express; 2012 Aug; 20(18):20754-70. PubMed ID: 23037125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM).
    Slonecker ET; Jones DK; Pellerin BA
    Mar Pollut Bull; 2016 Jun; 107(2):518-27. PubMed ID: 27004998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new approach for the estimation of phytoplankton cell counts associated with algal blooms.
    Nazeer M; Wong MS; Nichol JE
    Sci Total Environ; 2017 Jul; 590-591():125-138. PubMed ID: 28283297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.