These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30142748)

  • 41. Velocity-weighting to prevent controller-induced hypoglycemia in MPC of an artificial pancreas to treat T1DM.
    Gondhalekar R; Dassau E; Doyle FJ
    Proc Am Control Conf; 2015 Jul; 2015():1635-1640. PubMed ID: 28479661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Variable State Dimension Approach to Meal Detection and Meal Size Estimation: In Silico Evaluation Through Basal-Bolus Insulin Therapy for Type 1 Diabetes.
    Xie J; Wang Q
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1249-1260. PubMed ID: 28541188
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hybrid Closed-Loop Insulin Delivery in Type 1 Diabetes During Supervised Outpatient Conditions.
    Grosman B; Ilany J; Roy A; Kurtz N; Wu D; Parikh N; Voskanyan G; Konvalina N; Mylonas C; Gottlieb R; Kaufman F; Cohen O
    J Diabetes Sci Technol; 2016 May; 10(3):708-13. PubMed ID: 26880389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using an Online Disturbance Rejection and Anticipation System to Reduce Hyperglycemia in a Fully Closed-Loop Artificial Pancreas System.
    Corbett JP; Garcia-Tirado J; Colmegna P; Diaz Castaneda JL; Breton MD
    J Diabetes Sci Technol; 2022 Jan; 16(1):52-60. PubMed ID: 34861786
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Embedded Model Predictive Control for a Wearable Artificial Pancreas.
    Chakrabarty A; Healey E; Shi D; Zavitsanou S; Doyle FJ; Dassau E
    IEEE Trans Control Syst Technol; 2020 Nov; 28(6):2600-2607. PubMed ID: 33762804
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor.
    Finan DA; Dassau E; Breton MD; Patek SD; McCann TW; Kovatchev BP; Doyle FJ; Levy BL; Venugopalan R
    J Diabetes Sci Technol; 2015 Jun; 10(1):104-10. PubMed ID: 26134834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. First use of model predictive control in outpatient wearable artificial pancreas.
    Del Favero S; Bruttomesso D; Di Palma F; Lanzola G; Visentin R; Filippi A; Scotton R; Toffanin C; Messori M; Scarpellini S; Keith-Hynes P; Kovatchev BP; Devries JH; Renard E; Magni L; Avogaro A; Cobelli C;
    Diabetes Care; 2014; 37(5):1212-5. PubMed ID: 24757228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control-relevant models for glucose control using a priori patient characteristics.
    van Heusden K; Dassau E; Zisser HC; Seborg DE; Doyle FJ
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1839-49. PubMed ID: 22127988
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Closed-Loop Control Without Meal Announcement in Type 1 Diabetes.
    Cameron FM; Ly TT; Buckingham BA; Maahs DM; Forlenza GP; Levy CJ; Lam D; Clinton P; Messer LH; Westfall E; Levister C; Xie YY; Baysal N; Howsmon D; Patek SD; Bequette BW
    Diabetes Technol Ther; 2017 Sep; 19(9):527-532. PubMed ID: 28767276
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Meal Detection in Patients With Type 1 Diabetes: A New Module for the Multivariable Adaptive Artificial Pancreas Control System.
    Turksoy K; Samadi S; Feng J; Littlejohn E; Quinn L; Cinar A
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):47-54. PubMed ID: 26087510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Closed-Loop Control of Postprandial Glycemia Using an Insulin-on-Board Limitation Through Continuous Action on Glucose Target.
    Rossetti P; Quirós C; Moscardó V; Comas A; Giménez M; Ampudia-Blasco FJ; León F; Montaser E; Conget I; Bondia J; Vehí J
    Diabetes Technol Ther; 2017 Jun; 19(6):355-362. PubMed ID: 28459603
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas.
    Weinzimer SA; Steil GM; Swan KL; Dziura J; Kurtz N; Tamborlane WV
    Diabetes Care; 2008 May; 31(5):934-9. PubMed ID: 18252903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An In Silico Head-to-Head Comparison of the Do-It-Yourself Artificial Pancreas Loop and Bio-Inspired Artificial Pancreas Control Algorithms.
    Armiger R; Reddy M; Oliver NS; Georgiou P; Herrero P
    J Diabetes Sci Technol; 2022 Jan; 16(1):29-39. PubMed ID: 34861785
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reducing Glucose Variability Due to Meals and Postprandial Exercise in T1DM Using Switched LPV Control: In Silico Studies.
    Colmegna PH; Sánchez-Peña RS; Gondhalekar R; Dassau E; Doyle FJ
    J Diabetes Sci Technol; 2016 May; 10(3):744-53. PubMed ID: 27022097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identifiability Analysis of Three Control-Oriented Models for Use in Artificial Pancreas Systems.
    Garcia-Tirado J; Zuluaga-Bedoya C; Breton MD
    J Diabetes Sci Technol; 2018 Sep; 12(5):937-952. PubMed ID: 30095007
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A closed-loop artificial pancreas using a proportional integral derivative with double phase lead controller based on a new nonlinear model of glucose metabolism.
    Abbes IB; Richard PY; Lefebvre MA; Guilhem I; Poirier JY
    J Diabetes Sci Technol; 2013 May; 7(3):699-707. PubMed ID: 23759403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System.
    Samadi S; Rashid M; Turksoy K; Feng J; Hajizadeh I; Hobbs N; Lazaro C; Sevil M; Littlejohn E; Cinar A
    Diabetes Technol Ther; 2018 Mar; 20(3):235-246. PubMed ID: 29406789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integration of a Safety Module to Prevent Rebound Hypoglycemia in Closed-Loop Artificial Pancreas Systems.
    Villa-Tamayo MF; Colmegna P; Breton MD
    J Diabetes Sci Technol; 2024 Mar; 18(2):318-323. PubMed ID: 37966051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. "Learning" Can Improve the Blood Glucose Control Performance for Type 1 Diabetes Mellitus.
    Wang Y; Zhang J; Zeng F; Wang N; Chen X; Zhang B; Zhao D; Yang W; Cobelli C
    Diabetes Technol Ther; 2017 Jan; 19(1):41-48. PubMed ID: 28060528
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptive fuzzy integral sliding mode control of blood glucose level in patients with type 1 diabetes: In silico studies.
    Asadi S; Nekoukar V
    Math Biosci; 2018 Nov; 305():122-132. PubMed ID: 30201283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.