These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30142964)

  • 1. Comparison of L1 and L5 Bands GNSS Signals Acquisition.
    Leclère J; Landry R; Botteron C
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30142964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Limits of GNSS Code-based Precise Positioning: GPS, Galileo & Meta-Signals.
    Das P; Ortega L; Vilà-Valls J; Vincent F; Chaumette E; Davain L
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Signals on L5/E5a/B2a for Dual-Frequency GNSS Precise Point Positioning.
    Naciri N; Hauschild A; Bisnath S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise Method of Ambiguity Initialization for Short Baselines with L1-L5 or E5-E5a GPS/GALILEO Data.
    Bakuła M
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32748893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NaviSoC: High-Accuracy Low-Power GNSS SoC with an Integrated Application Processor.
    Borejko T; Marcinek K; Siwiec K; Narczyk P; Borkowski A; Butryn I; Łuczyk A; Pietroń D; Plasota M; Reszewicz S; Wiechowski Ł; Pleskacz WA
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of Galileo signals for time metrology.
    Defraigne P; Aerts W; Cerretto G; Cantoni E; Sleewaegen JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1967-75. PubMed ID: 25474773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of the Cramér-Rao Bound in the GNSS-Reflectometry Context for Static, Ground-Based Receivers in Scenarios with Coherent Reflection.
    Ribot MA; Botteron C; Farine PA
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27929388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking.
    Wang K; Chen P; Teunissen PJG
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation Quality Assessment and Performance of GNSS Standalone Positioning with Code Pseudoranges of Dual-Frequency Android Smartphones.
    Robustelli U; Paziewski J; Pugliano G
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements.
    Yun J; Lim C; Park B
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positioning Performance Limits of GNSS Meta-Signals and HO-BOC Signals.
    Ortega L; Medina D; Vilà-Valls J; Vincent F; Chaumette E
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Performance Analysis of Signal Acquisition and Doppler Tracking in LEO Augmented GNSS Receiver.
    Cheng L; Dai Y; Guo W; Zheng J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation Strategies for a Universal Acquisition and Tracking Channel Applied to Real GNSS Signals.
    Fortin MA; Landry R
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27144569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Code DGNSS Positioning for Faster L1-L5 GPS Ambiguity Initialization.
    Bakuła M; Uradziński M; Krasuski K
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intense L-Band Solar Radio Bursts Detection Based on GNSS Carrier-To-Noise Ratio Decrease over Multi-Satellite and Multi-Station.
    Yang F; Zhu X; Chen X; Lin M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones.
    Dabove P; Di Pietra V
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combating Single-Frequency Jamming through a Multi-Frequency, Multi-Constellation Software Receiver: A Case Study for Maritime Navigation in the Gulf of Finland.
    Islam S; Bhuiyan MZH; Thombre S; Kaasalainen S
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone.
    Wu Q; Sun M; Zhou C; Zhang P
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.