These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30143066)

  • 21. Increased urinary Na-Cl cotransporter protein in familial hyperkalaemia and hypertension.
    Mayan H; Attar-Herzberg D; Shaharabany M; Holtzman EJ; Farfel Z
    Nephrol Dial Transplant; 2008 Feb; 23(2):492-6. PubMed ID: 17951312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of pseudohypoaldosteronism type II as type IV renal tubular acidosis: results of a literature review.
    Adachi M; Motegi S; Nagahara K; Ochi A; Toyoda J; Mizuno K
    Endocr J; 2023 Jul; 70(7):723-729. PubMed ID: 37081692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypertension, mineralocorticoid-resistant hyperkalemia, and hyperchloremic acidosis in an infant with obstructive uropathy.
    Kozeny GA; Hurley RM; Vertuno LL; Bansal VK; Zeller WP; Hano JE
    Am J Nephrol; 1986; 6(6):476-81. PubMed ID: 3565506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Familial renal tubular acidosis.
    Alper SL
    J Nephrol; 2010; 23 Suppl 16():S57-76. PubMed ID: 21170890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudohypoaldosteronism Type II or Gordon Syndrome: A Rare Syndrome of Hyperkalemia and Hypertension With Normal Renal Function.
    Manas F; Singh S
    Cureus; 2024 Jan; 16(1):e52594. PubMed ID: 38374860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neonatal renal venous thrombosis followed by secondary pseudohypoaldosteronism.
    Nakashima H; Kibe T; Ohro Y; Fujita N
    Pediatr Int; 2012 Dec; 54(6):936-8. PubMed ID: 23279027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic Metabolic Acidosis Activates Renal Tubular Sodium Chloride Cotransporter through Angiotension II-dependent WNK4-SPAK Phosphorylation Pathway.
    Fang YW; Yang SS; Cheng CJ; Tseng MH; Hsu HM; Lin SH
    Sci Rep; 2016 Jan; 6():18360. PubMed ID: 26728390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel target for diuretic therapy.
    Soleimani M
    Iran J Kidney Dis; 2012 Nov; 6(6):419-25. PubMed ID: 23146978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperkalemic distal renal tubular acidosis caused by immunosuppressant treatment with tacrolimus in a liver transplant patient: case report.
    Riveiro-Barciela M; Campos-Varela I; Tovar JL; Vargas V; Simón-Talero M; Ventura-Cots M; Crespo M; Bilbao I; Castells L
    Transplant Proc; 2011 Dec; 43(10):4016-8. PubMed ID: 22172892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Na(+), K(+), Cl(-), acid-base or H2O homeostasis in children with urinary tract infections: a narrative review.
    Bertini A; Milani GP; Simonetti GD; Fossali EF; Faré PB; Bianchetti MG; Lava SA
    Pediatr Nephrol; 2016 Sep; 31(9):1403-9. PubMed ID: 26701834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudohypoaldosteronism and acquired renal aldosterone resistance with hyperkalemic type IV renal tubular acidosis in 2 cats.
    Marino CL; Foster JD
    J Vet Intern Med; 2024; 38(4):2344-2347. PubMed ID: 38695414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension.
    Gamba G
    Am J Physiol Renal Physiol; 2005 Feb; 288(2):F245-52. PubMed ID: 15637347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Type 4 renal tubular acidosis in a kidney transplant recipient.
    Kulkarni M
    Biomed J; 2016 Feb; 39(1):85-6. PubMed ID: 27105603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Type IV renal tubular acidosis: pathogenetic role of aldosterone deficiency and hyperkalemia].
    Schambelan M; Sebastian A
    Nephrologie; 1985; 6(3):135-7. PubMed ID: 3908957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of mineralocorticoids on acid-base balance.
    Wagner CA
    Nephron Physiol; 2014; 128(1-2):26-34. PubMed ID: 25377117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renal tubular acidosis type 4 in pregnancy.
    Jakes AD; Baynes K; Nelson-Piercy C
    BMJ Case Rep; 2016 Mar; 2016():. PubMed ID: 26989116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adult nephron-specific MR-deficient mice develop a severe renal PHA-1 phenotype.
    Canonica J; Sergi C; Maillard M; Klusonova P; Odermatt A; Koesters R; Loffing-Cueni D; Loffing J; Rossier B; Frateschi S; Hummler E
    Pflugers Arch; 2016 May; 468(5):895-908. PubMed ID: 26762397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis.
    Lo YF; Yang SS; Seki G; Yamada H; Horita S; Yamazaki O; Fujita T; Usui T; Tsai JD; Yu IS; Lin SW; Lin SH
    Kidney Int; 2011 Apr; 79(7):730-41. PubMed ID: 21228764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene.
    Golbang AP; Murthy M; Hamad A; Liu CH; Cope G; Van't Hoff W; Cuthbert A; O'Shaughnessy KM
    Hypertension; 2005 Aug; 46(2):295-300. PubMed ID: 15998707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Familial hyperkalemia and hypertension and a hypothesis to explain proximal renal tubular acidosis.
    Farfel Z; Mayan H; Karlish SJD
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16173-16174. PubMed ID: 31371517
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.