BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30143139)

  • 1. Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review.
    K KR; Sardar UR; Bhargavi E; Devi I; Bhunia B; Tiwari ON
    Carbohydr Polym; 2018 Nov; 199():353-364. PubMed ID: 30143139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of Toxic Heavy Metals: A Patent Review.
    Verma N; Sharma R
    Recent Pat Biotechnol; 2017; 11(3):171-187. PubMed ID: 28078980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.
    Mishra GK
    Recent Pat Biotechnol; 2017; 11(3):188-196. PubMed ID: 28116999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites.
    Mota R; Rossi F; Andrenelli L; Pereira SB; De Philippis R; Tamagnini P
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7765-75. PubMed ID: 27188779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J; Siglova M; Cejkova A; Masak J; Jirku V
    Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.
    Sayyed RZ; Patel PR; Shaikh SS
    Indian J Exp Biol; 2015 Feb; 53(2):116-23. PubMed ID: 25757243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective of Microbial Exopolysaccharide for Heavy Metal Exclusion.
    Mohite BV; Koli SH; Narkhede CP; Patil SN; Patil SV
    Appl Biochem Biotechnol; 2017 Oct; 183(2):582-600. PubMed ID: 28889346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.
    Chen M; Xu P; Zeng G; Yang C; Huang D; Zhang J
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):745-55. PubMed ID: 26008965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.
    Lu M; Jiao S; Gao E; Song X; Li Z; Hao X; Rensing C; Wei G
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an exopolysaccharide produced by
    Dhanya BE; Athmika ; Rekha PD
    3 Biotech; 2021 Dec; 11(12):491. PubMed ID: 34790515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties - review.
    Gientka I; Błażejak S; Stasiak-Różańska L; Chlebowska-Śmigiel A
    Acta Sci Pol Technol Aliment; 2015; 14(4):283-292. PubMed ID: 28068035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: Implications to bioremediation.
    Thavamani P; Megharaj M; Krishnamurti GS; McFarland R; Naidu R
    Environ Int; 2011 Jan; 37(1):184-9. PubMed ID: 20875686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial exopolysaccharides--a perception.
    Kumar AS; Mody K; Jha B
    J Basic Microbiol; 2007 Apr; 47(2):103-17. PubMed ID: 17440912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation techniques for heavy metal-contaminated soils: Principles and applicability.
    Liu L; Li W; Song W; Guo M
    Sci Total Environ; 2018 Aug; 633():206-219. PubMed ID: 29573687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review with recent advancements on bioremediation-based abolition of heavy metals.
    Gaur N; Flora G; Yadav M; Tiwari A
    Environ Sci Process Impacts; 2014 Feb; 16(2):180-93. PubMed ID: 24362580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial characterization and prioritization of heavy metal contaminated soil-water resources in peri-urban areas of National Capital Territory (NCT), Delhi.
    Kaur R; Rani R
    Environ Monit Assess; 2006 Dec; 123(1-3):233-47. PubMed ID: 16763736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Exopolysaccharides of
    Balíková K; Vojtková H; Duborská E; Kim H; Matúš P; Urík M
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297831
    [No Abstract]   [Full Text] [Related]  

  • 20. Exopolysaccharides from marine microbes with prowess for environment cleanup.
    Baria DM; Patel NY; Yagnik SM; Panchal RR; Rajput KN; Raval VH
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):76611-76625. PubMed ID: 36166130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.