BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30143552)

  • 1. Challenges and approaches to predicting RNA with multiple functional structures.
    Schroeder SJ
    RNA; 2018 Dec; 24(12):1615-1624. PubMed ID: 30143552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swellix: a computational tool to explore RNA conformational space.
    Sloat N; Liu JW; Schroeder SJ
    BMC Bioinformatics; 2017 Nov; 18(1):504. PubMed ID: 29157200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures.
    Bleckley S; Stone JW; Schroeder SJ
    PLoS One; 2012; 7(12):e52414. PubMed ID: 23300665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crumple: An Efficient Tool to Explore Thoroughly the RNA Folding Landscape.
    Guerra I; Schroeder SJ
    Methods Mol Biol; 2016; 1490():1-14. PubMed ID: 27665589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting RNA structure: advances and limitations.
    Hofacker IL; Lorenz R
    Methods Mol Biol; 2014; 1086():1-19. PubMed ID: 24136595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frnakenstein: multiple target inverse RNA folding.
    Lyngsø RB; Anderson JW; Sizikova E; Badugu A; Hyland T; Hein J
    BMC Bioinformatics; 2012 Oct; 13():260. PubMed ID: 23043260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting folding pathways between RNA conformational structures guided by RNA stacks.
    Li Y; Zhang S
    BMC Bioinformatics; 2012 Mar; 13 Suppl 3(Suppl 3):S5. PubMed ID: 22536903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy minimization to predict RNA secondary structures and computational RNA design.
    Churkin A; Weinbrand L; Barash D
    Methods Mol Biol; 2015; 1269():3-16. PubMed ID: 25577369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble simulations: folding, unfolding and misfolding of a high-efficiency frameshifting RNA pseudoknot.
    Q Nguyen KK; Gomez YK; Bakhom M; Radcliffe A; La P; Rochelle D; Lee JW; Sorin EJ
    Nucleic Acids Res; 2017 May; 45(8):4893-4904. PubMed ID: 28115636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abstract shape analysis of RNA.
    Janssen S; Giegerich R
    Methods Mol Biol; 2014; 1097():215-45. PubMed ID: 24639162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphical exploratory data analysis of RNA secondary structure dynamics predicted by the massively parallel genetic algorithm.
    Shapiro BA; Kasprzak W; Grunewald C; Aman J
    J Mol Graph Model; 2006 Dec; 25(4):514-31. PubMed ID: 16725358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cotranscriptional Kinetic Folding of RNA Secondary Structures Including Pseudoknots.
    Thanh VH; Korpela D; Orponen P
    J Comput Biol; 2021 Sep; 28(9):892-908. PubMed ID: 33902324
    [No Abstract]   [Full Text] [Related]  

  • 14. RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design.
    Garcia-Martin JA; Clote P; Dotu I
    J Bioinform Comput Biol; 2013 Apr; 11(2):1350001. PubMed ID: 23600819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function.
    Herschlag D; Allred BE; Gowrishankar S
    Curr Opin Struct Biol; 2015 Feb; 30():125-133. PubMed ID: 25744941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient algorithms for probing the RNA mutation landscape.
    Waldispühl J; Devadas S; Berger B; Clote P
    PLoS Comput Biol; 2008 Aug; 4(8):e1000124. PubMed ID: 18688270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the Conformational Free-Energy Landscape of RNA Stem-Loops Using Single-Molecule Field-Effect Transistors.
    Jang SS; Dubnik S; Hon J; Hellenkamp B; Lynall DG; Shepard KL; Nuckolls C; Gonzalez RL
    J Am Chem Soc; 2023 Jan; 145(1):402-412. PubMed ID: 36547391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA secondary structure prediction using highly parallel computers.
    Nakaya A; Yamamoto K; Yonezawa A
    Comput Appl Biosci; 1995 Dec; 11(6):685-92. PubMed ID: 8808586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-directed RNA structure prediction.
    Hofacker IL
    Methods Mol Biol; 2014; 1097():71-84. PubMed ID: 24639155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic and Chemical Probing Information as Soft Constraints in RNA Secondary Structure Prediction.
    von Löhneysen S; Spicher T; Varenyk Y; Yao HT; Lorenz R; Hofacker I; Stadler PF
    J Comput Biol; 2024 Jun; 31(6):549-563. PubMed ID: 38935442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.