These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30143641)

  • 1. Peritectic titanium alloys for 3D printing.
    Barriobero-Vila P; Gussone J; Stark A; Schell N; Haubrich J; Requena G
    Nat Commun; 2018 Aug; 9(1):3426. PubMed ID: 30143641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive manufacturing of ultrafine-grained high-strength titanium alloys.
    Zhang D; Qiu D; Gibson MA; Zheng Y; Fraser HL; StJohn DH; Easton MA
    Nature; 2019 Dec; 576(7785):91-95. PubMed ID: 31802014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of high-strength aluminium alloys.
    Martin JH; Yahata BD; Hundley JM; Mayer JA; Schaedler TA; Pollock TM
    Nature; 2017 Sep; 549(7672):365-369. PubMed ID: 28933439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High fatigue resistance in a titanium alloy via near-void-free 3D printing.
    Qu Z; Zhang Z; Liu R; Xu L; Zhang Y; Li X; Zhao Z; Duan Q; Wang S; Li S; Ma Y; Shao X; Yang R; Eckert J; Ritchie RO; Zhang Z
    Nature; 2024 Feb; 626(8001):999-1004. PubMed ID: 38418915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain structure control during metal 3D printing by high-intensity ultrasound.
    Todaro CJ; Easton MA; Qiu D; Zhang D; Bermingham MJ; Lui EW; Brandt M; StJohn DH; Qian M
    Nat Commun; 2020 Jan; 11(1):142. PubMed ID: 31919347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Modeling of the Solidification Structure Evolution and of the Inter Layer/Track Voids Formation in Metallic Alloys Processed by Powder Bed Fusion Additive Manufacturing.
    Nastac L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys.
    Gorsse S; Hutchinson C; Gouné M; Banerjee R
    Sci Technol Adv Mater; 2017; 18(1):584-610. PubMed ID: 28970868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programming Crystallographic Orientation in Additive-Manufactured Beta-Type Titanium Alloy.
    Luo X; Song T; Gebert A; Neufeld K; Kaban I; Ma H; Cai W; Lu H; Li D; Li N; Li Y; Yang C
    Adv Sci (Weinh); 2023 Oct; 10(28):e2302884. PubMed ID: 37507830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects.
    Tshephe TS; Akinwamide SO; Olevsky E; Olubambi PA
    Heliyon; 2022 Mar; 8(3):e09041. PubMed ID: 35299605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive Manufacturing Processes in Selected Corrosion Resistant Materials: A State of Knowledge Review.
    Biserova-Tahchieva A; Biezma-Moraleda MV; Llorca-Isern N; Gonzalez-Lavin J; Linhardt P
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Laser Powder Bed Fusion Process Tailored for the Additive Manufacturing of High-Quality Components Made of the Commercial Magnesium Alloy WE43.
    Julmi S; Abel A; Gerdes N; Hoff C; Hermsdorf J; Overmeyer L; Klose C; Maier HJ
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong and ductile titanium-oxygen-iron alloys by additive manufacturing.
    Song T; Chen Z; Cui X; Lu S; Chen H; Wang H; Dong T; Qin B; Chan KC; Brandt M; Liao X; Ringer SP; Qian M
    Nature; 2023 Jun; 618(7963):63-68. PubMed ID: 37259002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underlying factors determining grain morphologies in high-strength titanium alloys processed by additive manufacturing.
    Nartu MSKKY; Welk BA; Mantri SA; Taylor NL; Viswanathan GB; Dahotre NB; Banerjee R; Fraser HL
    Nat Commun; 2023 Jun; 14(1):3288. PubMed ID: 37280250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontiers of Additively Manufactured Metallic Materials.
    Zadpoor AA
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30200231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastrong nanotwinned titanium alloys through additive manufacturing.
    Zhu Y; Zhang K; Meng Z; Zhang K; Hodgson P; Birbilis N; Weyland M; Fraser HL; Lim SCV; Peng H; Yang R; Wang H; Huang A
    Nat Mater; 2022 Nov; 21(11):1258-1262. PubMed ID: 36109672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Manufacturing of Metal Structures at the Micrometer Scale.
    Hirt L; Reiser A; Spolenak R; Zambelli T
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28052421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assay of Secondary Anisotropy in Additively Manufactured Alloys for Dental Applications.
    Bassoli E; Denti L
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30261629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Metal 3D Printing Pen Enabled by a Continuous Molten Droplet Transfer.
    Kim CK; Cho DW; Kim S; Song SW; Seo KM; Cho YT
    Adv Sci (Weinh); 2023 Feb; 10(6):e2205085. PubMed ID: 36526589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing gradient metal alloys through radial deposition additive manufacturing.
    Hofmann DC; Roberts S; Otis R; Kolodziejska J; Dillon RP; Suh JO; Shapiro AA; Liu ZK; Borgonia JP
    Sci Rep; 2014 Jun; 4():5357. PubMed ID: 24942329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.