These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30144107)

  • 1. Spatial Transmission Models: A Taxonomy and Framework.
    Robertson DA
    Risk Anal; 2019 Jan; 39(1):225-243. PubMed ID: 30144107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis.
    Firestone SM; Ward MP; Christley RM; Dhand NK
    Prev Vet Med; 2011 Dec; 102(3):185-95. PubMed ID: 21852007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling epidemics dynamics on heterogenous networks.
    Ben-Zion Y; Cohen Y; Shnerb NM
    J Theor Biol; 2010 May; 264(2):197-204. PubMed ID: 20117115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptic connections illuminate pathogen transmission within community networks.
    Hoyt JR; Langwig KE; White JP; Kaarakka HM; Redell JA; Kurta A; DePue JE; Scullon WH; Parise KL; Foster JT; Frick WF; Kilpatrick AM
    Nature; 2018 Nov; 563(7733):710-713. PubMed ID: 30455422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic spreading in annealed directed networks: susceptible-infected-susceptible model and contact process.
    Kwon S; Kim Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012813. PubMed ID: 23410394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling contact tracing in outbreaks with application to Ebola.
    Browne C; Gulbudak H; Webb G
    J Theor Biol; 2015 Nov; 384():33-49. PubMed ID: 26297316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission.
    Roche B; Guégan JF; Bousquet F
    BMC Bioinformatics; 2008 Oct; 9():435. PubMed ID: 18922166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human mobility and time spent at destination: impact on spatial epidemic spreading.
    Poletto C; Tizzoni M; Colizza V
    J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges.
    White LA; Forester JD; Craft ME
    J Anim Ecol; 2018 May; 87(3):559-580. PubMed ID: 28944450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating contact patterns relevant to the spread of infectious diseases in Russia.
    Ajelli M; Litvinova M
    J Theor Biol; 2017 Apr; 419():1-7. PubMed ID: 28161415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting epidemic risk from past temporal contact data.
    Valdano E; Poletto C; Giovannini A; Palma D; Savini L; Colizza V
    PLoS Comput Biol; 2015 Mar; 11(3):e1004152. PubMed ID: 25763816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission of severe acute respiratory syndrome in dynamical small-world networks.
    Masuda N; Konno N; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031917. PubMed ID: 15089332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods and measures for the description of epidemiologic contact networks.
    Riolo CS; Koopman JS; Chick SE
    J Urban Health; 2001 Sep; 78(3):446-57. PubMed ID: 11564848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of control and surveillance strategies for classical swine fever using a simulation model.
    Dürr S; Zu Dohna H; Di Labio E; Carpenter TE; Doherr MG
    Prev Vet Med; 2013 Jan; 108(1):73-84. PubMed ID: 22858424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.
    Pelosse P; Kribs-Zaleta CM
    J Theor Biol; 2012 Nov; 312():133-42. PubMed ID: 22892441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemic prediction and control in weighted networks.
    Eames KT; Read JM; Edmunds WJ
    Epidemics; 2009 Mar; 1(1):70-6. PubMed ID: 21352752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittent social distancing strategy for epidemic control.
    Valdez LD; Macri PA; Braunstein LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036108. PubMed ID: 22587150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agent-based mathematical modeling as a tool for estimating Trypanosoma cruzi vector-host contact rates.
    Yong KE; Mubayi A; Kribs CM
    Acta Trop; 2015 Nov; 151():21-31. PubMed ID: 26215127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.