BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 30144132)

  • 1. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals.
    Voss AK; Thomas T
    Bioessays; 2018 Oct; 40(10):e1800078. PubMed ID: 30144132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5.
    Hatakeyama D; Shoji M; Yamayoshi S; Yoh R; Ohmi N; Takenaka S; Saitoh A; Arakaki Y; Masuda A; Komatsu T; Nagano R; Nakano M; Noda T; Kawaoka Y; Kuzuhara T
    J Biol Chem; 2018 May; 293(19):7126-7138. PubMed ID: 29555684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology.
    Wiesel-Motiuk N; Assaraf YG
    Drug Resist Updat; 2020 Dec; 53():100729. PubMed ID: 33130515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates.
    Schiltz RL; Mizzen CA; Vassilev A; Cook RG; Allis CD; Nakatani Y
    J Biol Chem; 1999 Jan; 274(3):1189-92. PubMed ID: 9880483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation of Histone H2AX at Lys 5 by the TIP60 Histone Acetyltransferase Complex Is Essential for the Dynamic Binding of NBS1 to Damaged Chromatin.
    Ikura M; Furuya K; Matsuda S; Matsuda R; Shima H; Adachi J; Matsuda T; Shiraki T; Ikura T
    Mol Cell Biol; 2015 Dec; 35(24):4147-57. PubMed ID: 26438602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation.
    Nagy Z; Tora L
    Oncogene; 2007 Aug; 26(37):5341-57. PubMed ID: 17694077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1.
    Taubert S; Gorrini C; Frank SR; Parisi T; Fuchs M; Chan HM; Livingston DM; Amati B
    Mol Cell Biol; 2004 May; 24(10):4546-56. PubMed ID: 15121871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair.
    Li L; Wang Y
    J Biol Chem; 2017 Jul; 292(28):11951-11959. PubMed ID: 28546430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of protein turnover by acetyltransferases and deacetylases.
    Sadoul K; Boyault C; Pabion M; Khochbin S
    Biochimie; 2008 Feb; 90(2):306-12. PubMed ID: 17681659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MYST-family histone acetyltransferases: beyond chromatin.
    Sapountzi V; Côté J
    Cell Mol Life Sci; 2011 Apr; 68(7):1147-56. PubMed ID: 21132344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MYC recruits the TIP60 histone acetyltransferase complex to chromatin.
    Frank SR; Parisi T; Taubert S; Fernandez P; Fuchs M; Chan HM; Livingston DM; Amati B
    EMBO Rep; 2003 Jun; 4(6):575-80. PubMed ID: 12776177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases.
    Downey M
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194608. PubMed ID: 32711095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases.
    Yang XJ
    Nucleic Acids Res; 2004; 32(3):959-76. PubMed ID: 14960713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Myc-induced histone modifications on target chromatin.
    Martinato F; Cesaroni M; Amati B; Guccione E
    PLoS One; 2008; 3(11):e3650. PubMed ID: 18985155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe.
    Wijenayake S; Storey KB
    Mol Cell Biochem; 2020 Nov; 474(1-2):229-241. PubMed ID: 32729004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site specificity analysis of Piccolo NuA4-mediated acetylation for different histone complexes.
    Kuo YM; Henry RA; Tan S; Côté J; Andrews AJ
    Biochem J; 2015 Dec; 472(2):239-48. PubMed ID: 26420880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of DNA replication from the polyomavirus origin by PCAF and GCN5 acetyltransferases: acetylation of large T antigen.
    Xie AY; Bermudez VP; Folk WR
    Mol Cell Biol; 2002 Nov; 22(22):7907-18. PubMed ID: 12391158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3.
    Lim JH; West KL; Rubinstein Y; Bergel M; Postnikov YV; Bustin M
    EMBO J; 2005 Sep; 24(17):3038-48. PubMed ID: 16096646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of CBP- and P300-induced histone acetylations in vivo using native chromatin.
    McManus KJ; Hendzel MJ
    Mol Cell Biol; 2003 Nov; 23(21):7611-27. PubMed ID: 14560007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific acetylation of ISWI by GCN5.
    Ferreira R; Eberharter A; Bonaldi T; Chioda M; Imhof A; Becker PB
    BMC Mol Biol; 2007 Aug; 8():73. PubMed ID: 17760996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.