These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30144180)

  • 21. Time course of physical reconditioning during exercise rehabilitation late after heart transplantation.
    Tegtbur U; Busse MW; Jung K; Pethig K; Haverich A
    J Heart Lung Transplant; 2005 Mar; 24(3):270-4. PubMed ID: 15737752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuro-physiological adaptations associated with cross-education of strength.
    Farthing JP; Borowsky R; Chilibeck PD; Binsted G; Sarty GE
    Brain Topogr; 2007; 20(2):77-88. PubMed ID: 17932739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exercise economy does not change after acclimatization to moderate to very high altitude.
    Lundby C; Calbet JA; Sander M; van Hall G; Mazzeo RS; Stray-Gundersen J; Stager JM; Chapman RF; Saltin B; Levine BD
    Scand J Med Sci Sports; 2007 Jun; 17(3):281-91. PubMed ID: 17501869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation of human skeletal muscle to exercise-training.
    Simoneau JA
    Int J Obes Relat Metab Disord; 1995 Oct; 19 Suppl 4():S9-13. PubMed ID: 8581103
    [No Abstract]   [Full Text] [Related]  

  • 25. Exercise metabolism and the molecular regulation of skeletal muscle adaptation.
    Egan B; Zierath JR
    Cell Metab; 2013 Feb; 17(2):162-84. PubMed ID: 23395166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5135-47. PubMed ID: 26638792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autophagic adaptation is associated with exercise-induced fibre-type shifting in skeletal muscle.
    Tam BT; Pei XM; Yu AP; Sin TK; Leung KK; Au KK; Chong JT; Yung BY; Yip SP; Chan LW; Wong CS; Siu PM
    Acta Physiol (Oxf); 2015 Jun; 214(2):221-36. PubMed ID: 25847142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle.
    Drake JC; Wilson RJ; Yan Z
    FASEB J; 2016 Jan; 30(1):13-22. PubMed ID: 26370848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect.
    Murach KA; Bagley JR
    Sports Med; 2016 Aug; 46(8):1029-39. PubMed ID: 26932769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating effects of exercise training regimen on skeletal muscle properties in female polo ponies.
    Chanda M; Srikuea R; Cherdchutam W; Chairoungdua A; Piyachaturawat P
    BMC Vet Res; 2016 Nov; 12(1):245. PubMed ID: 27809906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of AMPK in skeletal muscle gene adaptation in relation to exercise.
    Jørgensen SB; Jensen TE; Richter EA
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):904-11. PubMed ID: 18059615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular bases of training adaptation.
    Coffey VG; Hawley JA
    Sports Med; 2007; 37(9):737-63. PubMed ID: 17722947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Range of motion, neuromechanical, and architectural adaptations to plantar flexor stretch training in humans.
    Blazevich AJ; Cannavan D; Waugh CM; Miller SC; Thorlund JB; Aagaard P; Kay AD
    J Appl Physiol (1985); 2014 Sep; 117(5):452-62. PubMed ID: 24947023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Higher - Further - Faster].
    Platen P
    Sportverletz Sportschaden; 2016 Aug; 30(3):139-42. PubMed ID: 27490351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-intensity aerobic interval training can lead to improvement in skeletal muscle power among in-hospital patients with advanced heart failure.
    Taya M; Amiya E; Hatano M; Maki H; Nitta D; Saito A; Tsuji M; Hosoya Y; Minatsuki S; Nakayama A; Fujiwara T; Konishi Y; Yokota K; Watanabe M; Morita H; Haga N; Komuro I
    Heart Vessels; 2018 Jul; 33(7):752-759. PubMed ID: 29335797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise training increases oxidative capacity and attenuates exercise-induced ultrastructural damage in skeletal muscle of aged horses.
    Kim JS; Hinchcliff KW; Yamaguchi M; Beard LA; Markert CD; Devor ST
    J Appl Physiol (1985); 2005 Jan; 98(1):334-42. PubMed ID: 15377646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determining Strength: A Case for Multiple Methods of Measurement.
    Buckner SL; Jessee MB; Mattocks KT; Mouser JG; Counts BR; Dankel SJ; Loenneke JP
    Sports Med; 2017 Feb; 47(2):193-195. PubMed ID: 27380100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase.
    Nyberg M; Egelund J; Mandrup CM; Andersen CB; Hansen KMBE; Hergel IF; Valbak-Andersen N; Frikke-Schmidt R; Stallknecht B; Bangsbo J; Hellsten Y
    J Physiol; 2017 May; 595(9):2969-2983. PubMed ID: 28231611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Training-specific adaptations of H- and stretch reflexes in human soleus muscle.
    Gruber M; Taube W; Gollhofer A; Beck S; Amtage F; Schubert M
    J Mot Behav; 2007 Jan; 39(1):68-78. PubMed ID: 17251172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The adaptation of human skeletal muscle fibers during aerobic training].
    Nemirovskaia TL; Shenkman BS; Nekrasov AN
    Morfologiia; 1994; 106(4-6):151-6. PubMed ID: 8718648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.