These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30144226)

  • 1. Facile Fabrication of Concentrated Polymer Brushes with Complex Patterning by Photocontrolled Organocatalyzed Living Radical Polymerization.
    Wang CG; Chen C; Sakakibara K; Tsujii Y; Goto A
    Angew Chem Int Ed Engl; 2018 Oct; 57(41):13504-13508. PubMed ID: 30144226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films.
    Kumar R; Welle A; Becker F; Kopyeva I; Lahann J
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tapping the potential of polymer brushes through synthesis.
    Li B; Yu B; Ye Q; Zhou F
    Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization and Patterning of Self-Assembled Monolayers and Polymer Brushes Using Microcontact Chemistry.
    Lamping S; Buten C; Ravoo BJ
    Acc Chem Res; 2019 May; 52(5):1336-1346. PubMed ID: 30969751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Homopolymer, Block Copolymer, and Patterned Brushes Bearing Thiophene and Acetylene Groups Using Microliter Volumes of Reaction Mixtures.
    Smenda J; Wolski K; Chajec K; Zapotoczny S
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning of polymer brushes. A direct approach to complex, sub-surface structures.
    Paik MY; Xu Y; Rastogi A; Tanaka M; Yi Y; Ober CK
    Nano Lett; 2010 Oct; 10(10):3873-9. PubMed ID: 20815408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro- and nanostructured poly[oligo(ethylene glycol)methacrylate] brushes grown from photopatterned halogen initiators by atom transfer radical polymerization.
    Ahmad SA; Leggett GJ; Hucknall A; Chilkoti A
    Biointerphases; 2011 Mar; 6(1):8-15. PubMed ID: 21428690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncovalent microcontact printing for grafting patterned polymer brushes on graphene films.
    Gao T; Wang X; Yu B; Wei Q; Xia Y; Zhou F
    Langmuir; 2013 Jan; 29(4):1054-60. PubMed ID: 23294478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for UV-patterning with binary polymer brushes.
    Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K
    Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemically mediated atom transfer radical polymerization from a substrate surface manipulated by bipolar electrolysis: fabrication of gradient and patterned polymer brushes.
    Shida N; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3922-6. PubMed ID: 25704396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective Synthesis of Patterned Polymer Brushes with Tailored Multiple Graft Densities.
    Wang CG; Yong HW; Goto A
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14478-14484. PubMed ID: 30938500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer Dispersity Control by Organocatalyzed Living Radical Polymerization.
    Liu X; Wang CG; Goto A
    Angew Chem Int Ed Engl; 2019 Apr; 58(17):5598-5603. PubMed ID: 30786121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-Inspired Renewable Surface-Initiated Polymerization from Permanently Embedded Initiators.
    Du T; Li B; Wang X; Yu B; Pei X; Huck WT; Zhou F
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4260-4. PubMed ID: 26915991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electropatterning of binary polymer brushes by surface-initiated RAFT and ATRP.
    Tria MC; Advincula RC
    Macromol Rapid Commun; 2011 Jul; 32(13):966-71. PubMed ID: 21542044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces.
    Wei Q; Yu B; Wang X; Zhou F
    Macromol Rapid Commun; 2014 Jun; 35(11):1046-54. PubMed ID: 24648357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile surface immobilization of ATRP initiators on colloidal polymers for grafting brushes and application to colloidal crystals.
    Liu YY; Chen H; Ishizu K
    Langmuir; 2011 Feb; 27(3):1168-74. PubMed ID: 21214212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile method to prepare smooth and homogeneous polymer brush surfaces of varied brush thickness and grafting density.
    Wang S; Zhu Y
    Langmuir; 2009 Dec; 25(23):13448-55. PubMed ID: 19863074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.