BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 30144301)

  • 21. A metastable intermediate state of microtubule dynamic instability that differs significantly between plus and minus ends.
    Tran PT; Walker RA; Salmon ED
    J Cell Biol; 1997 Jul; 138(1):105-17. PubMed ID: 9214385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Septin 9 Exhibits Polymorphic Binding to F-Actin and Inhibits Myosin and Cofilin Activity.
    Smith C; Dolat L; Angelis D; Forgacs E; Spiliotis ET; Galkin VE
    J Mol Biol; 2015 Oct; 427(20):3273-3284. PubMed ID: 26297986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer simulation reveals the effect of severing enzymes on dynamic and stabilized microtubules.
    Sen A; Kunwar A
    Phys Biol; 2023 Apr; 20(3):. PubMed ID: 36893471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice.
    Yue Y; Hotta T; Higaki T; Verhey KJ; Ohi R
    Curr Biol; 2023 Oct; 33(19):4111-4123.e7. PubMed ID: 37716348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.
    Al-Bassam J
    Methods Enzymol; 2014; 540():131-48. PubMed ID: 24630105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers.
    Sellin ME; Stenmark S; Gullberg M
    Mol Biol Cell; 2012 Nov; 23(21):4242-55. PubMed ID: 22956766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP.
    Al-Bassam J; Chang F
    Trends Cell Biol; 2011 Oct; 21(10):604-14. PubMed ID: 21782439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin.
    Hendershott MC; Vale RD
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5860-5. PubMed ID: 24706919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission.
    Kim MS; Froese CD; Estey MP; Trimble WS
    J Cell Biol; 2011 Nov; 195(5):815-26. PubMed ID: 22123865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the size and chemical nature of the stabilizing "cap" at microtubule ends using modulators of polymerization dynamics.
    Panda D; Miller HP; Wilson L
    Biochemistry; 2002 Feb; 41(5):1609-17. PubMed ID: 11814355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule.
    Al-Bassam J; Kim H; Brouhard G; van Oijen A; Harrison SC; Chang F
    Dev Cell; 2010 Aug; 19(2):245-58. PubMed ID: 20708587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imaging GTP-bound tubulin: from cellular to in vitro assembled microtubules.
    de Forges H; Pilon A; Poüs C; Perez F
    Methods Cell Biol; 2013; 115():139-53. PubMed ID: 23973071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Septins mediate a microtubule-actin crosstalk that enables actin growth on microtubules.
    Nakos K; Alam MNA; Radler MR; Kesisova IA; Yang C; Okletey J; Tomasso MR; Padrick SB; Svitkina TM; Spiliotis ET
    Proc Natl Acad Sci U S A; 2022 Dec; 119(50):e2202803119. PubMed ID: 36475946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability.
    White D; Honoré S; Hubert F
    J Theor Biol; 2017 Sep; 429():18-34. PubMed ID: 28645857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CLASP Mediates Microtubule Repair by Restricting Lattice Damage and Regulating Tubulin Incorporation.
    Aher A; Rai D; Schaedel L; Gaillard J; John K; Liu Q; Altelaar M; Blanchoin L; Thery M; Akhmanova A
    Curr Biol; 2020 Jun; 30(11):2175-2183.e6. PubMed ID: 32359430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A molecular-mechanical model of the microtubule.
    Molodtsov MI; Ermakova EA; Shnol EE; Grishchuk EL; McIntosh JR; Ataullakhanov FI
    Biophys J; 2005 May; 88(5):3167-79. PubMed ID: 15722432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of microtubule dynamic instability and treadmilling by deuterium oxide.
    Panda D; Chakrabarti G; Hudson J; Pigg K; Miller HP; Wilson L; Himes RH
    Biochemistry; 2000 May; 39(17):5075-81. PubMed ID: 10819973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases.
    Spiliotis ET
    J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29326311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Buffer conditions and non-tubulin factors critically affect the microtubule dynamic instability of sea urchin egg tubulin.
    Simon JR; Parsons SF; Salmon ED
    Cell Motil Cytoskeleton; 1992; 21(1):1-14. PubMed ID: 1540990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microtubule dynamics regulation reconstituted in budding yeast lysates.
    Bergman ZJ; Wong J; Drubin DG; Barnes G
    J Cell Sci; 2018 Sep; 132(4):. PubMed ID: 30185524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.