BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 30144338)

  • 21. Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light.
    Lorrain S; Trevisan M; Pradervand S; Fankhauser C
    Plant J; 2009 Nov; 60(3):449-61. PubMed ID: 19619162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling.
    Hoecker U
    Curr Opin Plant Biol; 2017 Jun; 37():63-69. PubMed ID: 28433946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.
    Thines BC; Youn Y; Duarte MI; Harmon FG
    J Exp Bot; 2014 Mar; 65(4):1141-51. PubMed ID: 24574484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reciprocal proteasome-mediated degradation of PIFs and HFR1 underlies photomorphogenic development in
    Xu X; Kathare PK; Pham VN; Bu Q; Nguyen A; Huq E
    Development; 2017 May; 144(10):1831-1840. PubMed ID: 28420710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio.
    Rolauffs S; Fackendahl P; Sahm J; Fiene G; Hoecker U
    Plant Physiol; 2012 Dec; 160(4):2015-27. PubMed ID: 23093358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis.
    Zhu W; Zhou H; Lin F; Zhao X; Jiang Y; Xu D; Deng XW
    Plant Cell; 2020 Oct; 32(10):3155-3169. PubMed ID: 32732313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis.
    Chang CS; Maloof JN; Wu SH
    Plant Physiol; 2011 May; 156(1):228-39. PubMed ID: 21427283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis.
    Shen H; Moon J; Huq E
    Plant J; 2005 Dec; 44(6):1023-35. PubMed ID: 16359394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways.
    Zhou P; Song M; Yang Q; Su L; Hou P; Guo L; Zheng X; Xi Y; Meng F; Xiao Y; Yang L; Yang J
    Plant Physiol; 2014 Feb; 164(2):841-52. PubMed ID: 24335334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.
    Maier A; Schrader A; Kokkelink L; Falke C; Welter B; Iniesto E; Rubio V; Uhrig JF; Hülskamp M; Hoecker U
    Plant J; 2013 May; 74(4):638-51. PubMed ID: 23425305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. COP1 re-accumulates in the nucleus under shade.
    Pacín M; Legris M; Casal JJ
    Plant J; 2013 Aug; 75(4):631-41. PubMed ID: 23647163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.
    Castillon A; Shen H; Huq E
    Genetics; 2009 May; 182(1):161-71. PubMed ID: 19255368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promotion of photomorphogenesis by COP1.
    Boccalandro HE; Rossi MC; Saijo Y; Deng XW; Casal JJ
    Plant Mol Biol; 2004 Dec; 56(6):905-15. PubMed ID: 15821989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth.
    Nusinow DA; Helfer A; Hamilton EE; King JJ; Imaizumi T; Schultz TF; Farré EM; Kay SA
    Nature; 2011 Jul; 475(7356):398-402. PubMed ID: 21753751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation.
    Ranjan A; Dickopf S; Ullrich KK; Rensing SA; Hoecker U
    BMC Plant Biol; 2014 Jul; 14():178. PubMed ID: 24985152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis.
    Paik I; Chen F; Ngoc Pham V; Zhu L; Kim JI; Huq E
    Nat Commun; 2019 Sep; 10(1):4216. PubMed ID: 31527679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light.
    Zheng X; Wu S; Zhai H; Zhou P; Song M; Su L; Xi Y; Li Z; Cai Y; Meng F; Yang L; Wang H; Yang J
    Plant Cell; 2013 Jan; 25(1):115-33. PubMed ID: 23371951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudo Response Regulators Regulate Photoperiodic Hypocotyl Growth by Repressing
    Li N; Zhang Y; He Y; Wang Y; Wang L
    Plant Physiol; 2020 Jun; 183(2):686-699. PubMed ID: 32165445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis.
    Pokhilko A; Ramos JA; Holtan H; Maszle DR; Khanna R; Millar AJ
    J Theor Biol; 2011 Feb; 270(1):31-41. PubMed ID: 21093457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.