These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 30144344)
1. A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. Tabatabaei I; Dal Bosco C; Bednarska M; Ruf S; Meurer J; Bock R Plant Biotechnol J; 2019 Mar; 17(3):638-649. PubMed ID: 30144344 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Brueggeman AJ; Kuehler D; Weeks DP Plant Biotechnol J; 2014 Sep; 12(7):894-902. PubMed ID: 24796724 [TBL] [Abstract][Full Text] [Related]
3. Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Bateman JM; Purton S Mol Gen Genet; 2000 Apr; 263(3):404-10. PubMed ID: 10821174 [TBL] [Abstract][Full Text] [Related]
4. Plant peptide deformylase: a novel selectable marker and herbicide target based on essential cotranslational chloroplast protein processing. Hou CX; Dirk LM; Pattanaik S; Das NC; Maiti IB; Houtz RL; Williams MA Plant Biotechnol J; 2007 Mar; 5(2):275-81. PubMed ID: 17309682 [TBL] [Abstract][Full Text] [Related]
5. Development of transformation vectors based upon a modified plant alpha-tubulin gene as the selectable marker. Yemets A; Radchuk V; Bayer O; Bayer G; Pakhomov A; Vance Baird W; Blume YB Cell Biol Int; 2008 May; 32(5):566-70. PubMed ID: 18180180 [TBL] [Abstract][Full Text] [Related]
6. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Sandoval-Vargas JM; Jiménez-Clemente LA; Macedo-Osorio KS; Oliver-Salvador MC; Fernández-Linares LC; Durán-Figueroa NV; Badillo-Corona JA Mol Biotechnol; 2019 Jun; 61(6):461-468. PubMed ID: 30997667 [TBL] [Abstract][Full Text] [Related]
7. Persistence of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance. Ye GN; Colburn SM; Xu CW; Hajdukiewicz PT; Staub JM Plant Physiol; 2003 Sep; 133(1):402-10. PubMed ID: 12970505 [TBL] [Abstract][Full Text] [Related]
9. The chloroplast transformation toolbox: selectable markers and marker removal. Day A; Goldschmidt-Clermont M Plant Biotechnol J; 2011 Jun; 9(5):540-53. PubMed ID: 21426476 [TBL] [Abstract][Full Text] [Related]
10. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Daniell H; Datta R; Varma S; Gray S; Lee SB Nat Biotechnol; 1998 Apr; 16(4):345-8. PubMed ID: 9555724 [TBL] [Abstract][Full Text] [Related]
11. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Daniell H; Muthukumar B; Lee SB Curr Genet; 2001 Apr; 39(2):109-16. PubMed ID: 11405095 [TBL] [Abstract][Full Text] [Related]
12. A Simple Technology for Generating Marker-Free Chloroplast Transformants of the Green Alga Chlamydomonas reinhardtii. Larrea-Alvarez M; Young R; Purton S Methods Mol Biol; 2021; 2317():293-304. PubMed ID: 34028777 [TBL] [Abstract][Full Text] [Related]
13. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. Bertalan I; Munder MC; Weiß C; Kopf J; Fischer D; Johanningmeier U J Biotechnol; 2015 Feb; 195():60-6. PubMed ID: 25554634 [TBL] [Abstract][Full Text] [Related]
14. The application of the mutated acetolactate synthase gene from rice as the selectable marker gene in the production of transgenic soybeans. Tougou M; Yamagishi N; Furutani N; Kaku K; Shimizu T; Takahata Y; Sakai J; Kanematsu S; Hidaka S Plant Cell Rep; 2009 May; 28(5):769-76. PubMed ID: 19219608 [TBL] [Abstract][Full Text] [Related]
15. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. Goldschmidt-Clermont M Nucleic Acids Res; 1991 Aug; 19(15):4083-9. PubMed ID: 1651475 [TBL] [Abstract][Full Text] [Related]
16. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Zhang R; Liu J; Chai Z; Chen S; Bai Y; Zong Y; Chen K; Li J; Jiang L; Gao C Nat Plants; 2019 May; 5(5):480-485. PubMed ID: 30988404 [TBL] [Abstract][Full Text] [Related]
17. Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection. Jia H; Pang Y; Chen X; Fang R Transgenic Res; 2006 Jun; 15(3):375-84. PubMed ID: 16779652 [TBL] [Abstract][Full Text] [Related]
18. Selection of transgenic rice plants using a herbicide tolerant form of the acetolactate synthase gene. Endo M; Shimizu T; Toki S Methods Mol Biol; 2012; 847():59-66. PubMed ID: 22350999 [TBL] [Abstract][Full Text] [Related]
19. [Construction of a vector conferring herbicide and pest resistance in tobacco plant]. Xie LX; Xu PL; Nie YF; Tian YC Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):545-50. PubMed ID: 15969081 [TBL] [Abstract][Full Text] [Related]
20. Excision of plastid marker genes using directly repeated DNA sequences. Mudd EA; Madesis P; Avila EM; Day A Methods Mol Biol; 2014; 1132():107-23. PubMed ID: 24599849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]