BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30144351)

  • 1. Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4.
    Qu L; Lin LB; Xue HW
    J Integr Plant Biol; 2019 Apr; 61(4):406-416. PubMed ID: 30144351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice.
    Liu JM; Park SJ; Huang J; Lee EJ; Xuan YH; Je BI; Kumar V; Priatama RA; Raj K V; Kim SH; Min MK; Cho JH; Kim TH; Chandran AK; Jung KH; Takatsuto S; Fujioka S; Han CD
    J Exp Bot; 2016 Mar; 67(6):1883-95. PubMed ID: 26826218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling.
    Chen SH; Zhou LJ; Xu P; Xue HW
    PLoS Genet; 2018 Nov; 14(11):e1007829. PubMed ID: 30496185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control.
    Zhao SQ; Xiang JJ; Xue HW
    Mol Plant; 2013 Jan; 6(1):174-87. PubMed ID: 22888153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa).
    Bian H; Xie Y; Guo F; Han N; Ma S; Zeng Z; Wang J; Yang Y; Zhu M
    New Phytol; 2012 Oct; 196(1):149-161. PubMed ID: 22846038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1.
    Zhang S; Wang S; Xu Y; Yu C; Shen C; Qian Q; Geisler M; Jiang de A; Qi Y
    Plant Cell Environ; 2015 Apr; 38(4):638-54. PubMed ID: 24995795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The basic helix-loop-helix transcription factor OsBLR1 regulates leaf angle in rice via brassinosteroid signalling.
    Wang K; Li MQ; Chang YP; Zhang B; Zhao QZ; Zhao WL
    Plant Mol Biol; 2020 Apr; 102(6):589-602. PubMed ID: 32026326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice.
    Gan L; Wu H; Wu D; Zhang Z; Guo Z; Yang N; Xia K; Zhou X; Oh K; Matsuoka M; Ng D; Zhu C
    Plant Sci; 2015 Dec; 241():238-45. PubMed ID: 26706074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar.
    Zhao SQ; Hu J; Guo LB; Qian Q; Xue HW
    Cell Res; 2010 Aug; 20(8):935-47. PubMed ID: 20644566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice.
    Sakamoto T; Morinaka Y; Inukai Y; Kitano H; Fujioka S
    Plant J; 2013 Feb; 73(4):676-88. PubMed ID: 23146214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An SPX-RLI1 Module Regulates Leaf Inclination in Response to Phosphate Availability in Rice.
    Ruan W; Guo M; Xu L; Wang X; Zhao H; Wang J; Yi K
    Plant Cell; 2018 Apr; 30(4):853-870. PubMed ID: 29610209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS.
    Song JB; Huang SQ; Dalmay T; Yang ZM
    Plant Cell Physiol; 2012 Jul; 53(7):1283-94. PubMed ID: 22619471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bHLH protein, OsBIM1, positively regulates rice leaf angle by promoting brassinosteroid signaling.
    Tian Q; Luan J; Guo C; Shi X; Deng P; Zhou Z; Zhang W; Shen L
    Biochem Biophys Res Commun; 2021 Nov; 578():129-135. PubMed ID: 34562652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RIP2 interacts with REL1 to control leaf architecture by modulating brassinosteroid signaling in rice.
    Zhang Q; Liu G; Jin J; Liang J; Zhang J; Peng H; Wang W; Zhang Z
    Theor Appl Genet; 2022 Mar; 135(3):979-991. PubMed ID: 35083510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice.
    Yang G; Matsuoka M; Iwasaki Y; Komatsu S
    Plant Mol Biol; 2003 Jul; 52(4):843-54. PubMed ID: 13677471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice Leaf Angle and Grain Size Are Affected by the OsBUL1 Transcriptional Activator Complex.
    Jang S; An G; Li HY
    Plant Physiol; 2017 Jan; 173(1):688-702. PubMed ID: 27879391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice.
    Zhang X; Sun J; Cao X; Song X
    Plant Physiol; 2015 Nov; 169(3):2118-28. PubMed ID: 26351308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.
    Zhou LJ; Xiao LT; Xue HW
    Plant Physiol; 2017 Jul; 174(3):1728-1746. PubMed ID: 28500269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheat
    Liu K; Cao J; Yu K; Liu X; Gao Y; Chen Q; Zhang W; Peng H; Du J; Xin M; Hu Z; Guo W; Rossi V; Ni Z; Sun Q; Yao Y
    Plant Physiol; 2019 Sep; 181(1):179-194. PubMed ID: 31209125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Rice Leaf Angle and Grain Size by Expressing
    Jang S; Cho JY; Do GR; Kang Y; Li HY; Song J; Kim HY; Kim BG; Hsing YI
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.