These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 30144723)
41. The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps: a field study of the Halsbrücke lead-zinc mine tailings (Germany). Kohfahl C; Graupner T; Fetzer C; Pekdeger A Sci Total Environ; 2010 Nov; 408(23):5932-9. PubMed ID: 20850166 [TBL] [Abstract][Full Text] [Related]
42. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer. Dold B; Diaby N; Spangenberg JE Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818 [TBL] [Abstract][Full Text] [Related]
43. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation. Nason P; Johnson RH; Neuschütz C; Alakangas L; Öhlander B J Hazard Mater; 2014 Feb; 267():245-54. PubMed ID: 24462894 [TBL] [Abstract][Full Text] [Related]
44. Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Chiu KK; Ye ZH; Wong MH Bioresour Technol; 2006 Jan; 97(1):158-70. PubMed ID: 16154513 [TBL] [Abstract][Full Text] [Related]
45. Use of alkaline extraction to quantify sulfate concentration in oxidized mine tailings. Yin G; Catalan LJ J Environ Qual; 2003; 32(6):2410-3. PubMed ID: 14674567 [TBL] [Abstract][Full Text] [Related]
46. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations. Zanko LM; Niles HB; Oreskovich JA Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S51-65. PubMed ID: 18166256 [TBL] [Abstract][Full Text] [Related]
47. Effects of organic amendments on the mobility of Pb and Zn from mine tailings added to semi-arid soils. Barajas-Aceves M; Rodríguez-Vázquez R J Environ Sci Health B; 2013; 48(3):226-36. PubMed ID: 23356345 [TBL] [Abstract][Full Text] [Related]
48. Synergistic effect of biogenic Fe Panda S; Akcil A; Mishra S; Erust C J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100 [TBL] [Abstract][Full Text] [Related]
49. Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. Hower JC; Fiket Ž; Henke KR; Hiett JK; Thorson JS; Kharel M; Dai S; Silva LFO; Oliveira MLS J Soils Sediments; 2022 Jun; 22(6):1773-1786. PubMed ID: 37475891 [TBL] [Abstract][Full Text] [Related]
50. Adsorption of trace elements on pyrite surfaces in sulfidic mine tailings from Kristineberg (Sweden) a few years after remediation. Müller B; Axelsson MD; Ohlander B Sci Total Environ; 2002 Oct; 298(1-3):1-16. PubMed ID: 12449325 [TBL] [Abstract][Full Text] [Related]
51. Unlocking the potential of sulphide tailings: A comprehensive characterization study for critical mineral recovery. Sarker SK; Pownceby MI; Bruckard W; Haque N; Bhuiyan M; Pramanik BK Chemosphere; 2023 Jul; 328():138582. PubMed ID: 37023909 [TBL] [Abstract][Full Text] [Related]
52. Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy. Paktunc D; Foster A; Laflamme G Environ Sci Technol; 2003 May; 37(10):2067-74. PubMed ID: 12785509 [TBL] [Abstract][Full Text] [Related]
53. Microbially influenced tungsten mobilization and formation of secondary minerals in wolframite tailings. Han Z; Levett A; Edraki M; Jones MWM; Howard D; Southam G J Hazard Mater; 2023 Mar; 445():130508. PubMed ID: 36473257 [TBL] [Abstract][Full Text] [Related]
54. Common and rare iron, sulfur, and zinc minerals in technogenically contaminated hydromorphic soil from Southern Russia. Vodyanitskii YN; Minkina TM; Kubrin SP; Pankratov DA; Fedorenko AG Environ Geochem Health; 2020 Jan; 42(1):95-108. PubMed ID: 31011941 [TBL] [Abstract][Full Text] [Related]
55. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation. Zhang Y; Li H; Yu X J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161 [TBL] [Abstract][Full Text] [Related]
56. Synthesis and characterization of coal fly ash and palm oil fuel ash modified artisanal and small-scale gold mine (ASGM) tailings based geopolymer using sugar mill lime sludge as Ca-based activator. Opiso EM; Tabelin CB; Maestre CV; Aseniero JPJ; Park I; Villacorte-Tabelin M Heliyon; 2021 Apr; 7(4):e06654. PubMed ID: 33869866 [TBL] [Abstract][Full Text] [Related]
57. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing. Kovács E; Dubbin WE; Tamás J Environ Pollut; 2006 May; 141(2):310-20. PubMed ID: 16219405 [TBL] [Abstract][Full Text] [Related]
58. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Drahota P; Raus K; Rychlíková E; Rohovec J Environ Geochem Health; 2018 Aug; 40(4):1495-1512. PubMed ID: 28620816 [TBL] [Abstract][Full Text] [Related]
59. Utilization of modified copper slag activated by Na Chen Q; Tao Y; Feng Y; Zhang Q; Liu Y J Environ Manage; 2021 Jul; 290():112608. PubMed ID: 33901826 [TBL] [Abstract][Full Text] [Related]
60. Field evaluation of the effectiveness of three industrial by-products as organic amendments for phytostabilization of a Pb/Zn mine tailings. Yang S; Cao J; Li F; Peng X; Peng Q; Yang Z; Chai L Environ Sci Process Impacts; 2016 Jan; 18(1):95-103. PubMed ID: 26611119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]