These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30145084)

  • 1. Corticospinal excitability following repetitive voluntary movement.
    Ishikawa N; Miyao R; Tsuiki S; Sasaki R; Miyaguchi S; Onishi H
    J Clin Neurosci; 2018 Nov; 57():93-98. PubMed ID: 30145084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of primary motor cortex excitability by repetitive passive finger movement frequency.
    Sasaki R; Nakagawa M; Tsuiki S; Miyaguchi S; Kojima S; Saito K; Inukai Y; Masaki M; Otsuru N; Onishi H
    Neuroscience; 2017 Aug; 357():232-240. PubMed ID: 28627417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement.
    Miyaguchi S; Onishi H; Kojima S; Sugawara K; Tsubaki A; Kirimoto H; Tamaki H; Yamamoto N
    Brain Res; 2013 Sep; 1529():83-91. PubMed ID: 23891715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further insight into the task-dependent excitability of motor evoked potentials in first dorsal interosseous muscle in humans.
    Hasegawa Y; Kasai T; Tsuji T; Yahagi S
    Exp Brain Res; 2001 Oct; 140(4):387-96. PubMed ID: 11685391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitability changes in the ipsilateral primary motor cortex during rhythmic contraction of finger muscles.
    Uehara K; Morishita T; Funase K
    Neurosci Lett; 2011 Jan; 488(1):22-5. PubMed ID: 21056628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability.
    Ataoglu EE; Caglayan HB; Cengiz B
    Exp Brain Res; 2017 Sep; 235(9):2653-2659. PubMed ID: 28577024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voluntary movement and repetitive transcranial magnetic stimulation over human motor cortex.
    Todd G; Rogasch NC; Flavel SC; Ridding MC
    J Appl Physiol (1985); 2009 May; 106(5):1593-603. PubMed ID: 19246656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-exercise depression in corticomotor excitability after dynamic movement: a general property of fatiguing and non-fatiguing exercise.
    Teo WP; Rodrigues JP; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2012 Jan; 216(1):41-9. PubMed ID: 22038716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decrease in short-latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement.
    Miyaguchi S; Kojima S; Sasaki R; Kotan S; Kirimoto H; Tamaki H; Onishi H
    Brain Behav; 2017 Jul; 7(7):e00744. PubMed ID: 28729946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-exercise cortical depression following repetitive passive finger movement.
    Otsuka R; Sasaki R; Tsuiki S; Kojima S; Onishi H
    Neurosci Lett; 2017 Aug; 656():89-93. PubMed ID: 28732763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability.
    Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S
    Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticomotor excitability and plasticity following complex visuomotor training in young and old adults.
    Cirillo J; Todd G; Semmler JG
    Eur J Neurosci; 2011 Dec; 34(11):1847-56. PubMed ID: 22004476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
    Liang N; Murakami T; Funase K; Narita T; Kasai T
    Neurosci Lett; 2008 Mar; 433(2):135-40. PubMed ID: 18261851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulations of input-output properties of corticospinal tract neurons by repetitive dynamic index finger abductions.
    Yahagi S; Takeda Y; Ni Z; Takahashi M; Tsuji T; Komiyama T; Maruishi M; Muranaka H; Kasai T
    Exp Brain Res; 2005 Feb; 161(2):255-64. PubMed ID: 15502988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional demanded excitability changes of human hand motor area.
    Ni Z; Takahashi M; Yamashita T; Liang N; Tanaka Y; Tsuji T; Yahagi S; Kasai T
    Exp Brain Res; 2006 Apr; 170(2):141-8. PubMed ID: 16328281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time changes in corticospinal excitability related to motor imagery of a force control task.
    Tatemoto T; Tsuchiya J; Numata A; Osawa R; Yamaguchi T; Tanabe S; Kondo K; Otaka Y; Sugawara K
    Behav Brain Res; 2017 Sep; 335():185-190. PubMed ID: 28827129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation.
    Darling WG; Wolf SL; Butler AJ
    Exp Brain Res; 2006 Sep; 174(2):376-85. PubMed ID: 16636787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional plasticity of surround inhibition in the motor cortex during single finger contraction training.
    Sugawara K; Tanabe S; Higashi T; Suzuki T; Tsurumi T; Kasai T
    Neuroreport; 2012 Aug; 23(11):663-7. PubMed ID: 22643236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in corticomotor excitability and inhibition after exercise are influenced by hand dominance and motor demand.
    Teo WP; Rodrigues JP; Mastaglia FL; Thickbroom GW
    Neuroscience; 2012 May; 210():110-7. PubMed ID: 22450228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitability changes in primary motor cortex just prior to voluntary muscle relaxation.
    Suzuki T; Sugawara K; Takagi M; Higashi T
    J Neurophysiol; 2015 Jan; 113(1):110-5. PubMed ID: 25298384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.