BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30145172)

  • 1. Image categorization from functional magnetic resonance imaging using functional connectivity.
    Liu C; Song S; Guo X; Zhu Z; Zhang J
    J Neurosci Methods; 2018 Nov; 309():71-80. PubMed ID: 30145172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representing object categories by connections: Evidence from a mutivariate connectivity pattern classification approach.
    Wang X; Fang Y; Cui Z; Xu Y; He Y; Guo Q; Bi Y
    Hum Brain Mapp; 2016 Oct; 37(10):3685-97. PubMed ID: 27218306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding sound categories based on whole-brain functional connectivity patterns.
    Zhang J; Zhang G; Li X; Wang P; Wang B; Liu B
    Brain Imaging Behav; 2020 Feb; 14(1):100-109. PubMed ID: 30361945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
    Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D
    Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting brain states associated with object categories from fMRI data.
    Behroozi M; Daliri MR
    J Integr Neurosci; 2014 Dec; 13(4):645-67. PubMed ID: 25352153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapidly Decoding Image Categories From MEG Data Using a Multivariate Short-Time FC Pattern Analysis Approach.
    Liu C; Kang Y; Zhang L; Zhang J
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1139-1150. PubMed ID: 32750957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Subclinical Language Deficit Using Machine Learning Classification Based on Poststroke Functional Connectivity Derived from Low Frequency Oscillations.
    Mohanty R; Nair VA; Tellapragada N; Williams LM; Kang TJ; Prabhakaran V
    Brain Connect; 2019 Mar; 9(2):194-208. PubMed ID: 30398379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.
    Larsson J; Harrison C; Jackson J; Oh SM; Zeringyte V
    J Neurophysiol; 2017 Feb; 117(2):818-835. PubMed ID: 27903637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex.
    Cox DD; Savoy RL
    Neuroimage; 2003 Jun; 19(2 Pt 1):261-70. PubMed ID: 12814577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding unattended fearful faces with whole-brain correlations: an approach to identify condition-dependent large-scale functional connectivity.
    Pantazatos SP; Talati A; Pavlidis P; Hirsch J
    PLoS Comput Biol; 2012; 8(3):e1002441. PubMed ID: 22479172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The encoding of category-specific versus nonspecific information in human inferior temporal cortex.
    Guo B; Meng M
    Neuroimage; 2015 Aug; 116():240-7. PubMed ID: 25869859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.
    Zhang F; Wang JP; Kim J; Parrish T; Wong PC
    PLoS One; 2015; 10(2):e0117303. PubMed ID: 25692885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-subject neural code converter for visual image representation.
    Yamada K; Miyawaki Y; Kamitani Y
    Neuroimage; 2015 Jun; 113():289-97. PubMed ID: 25842289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding disparity categories in 3-dimensional images from fMRI data using functional connectivity patterns.
    Liu C; Li Y; Song S; Zhang J
    Cogn Neurodyn; 2020 Apr; 14(2):169-179. PubMed ID: 32226560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding-window analysis tracks fluctuations in amygdala functional connectivity associated with physiological arousal and vigilance during fear conditioning.
    Baczkowski BM; Johnstone T; Walter H; Erk S; Veer IM
    Neuroimage; 2017 Jun; 153():168-178. PubMed ID: 28300639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.
    Watanabe N; Miyoshi K; Jimura K; Shimane D; Keerativittayayut R; Nakahara K; Takeda M
    Neuroimage; 2023 Jul; 275():120164. PubMed ID: 37169115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.