These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 30145414)
1. Understanding the ozonated degradation of sulfadimethoxine, exploration of reaction site, and classification of degradation products. Shad A; Li C; Zuo J; Liu J; Dar AA; Wang Z Chemosphere; 2018 Dec; 212():228-236. PubMed ID: 30145414 [TBL] [Abstract][Full Text] [Related]
2. Exploring ozonation as treatment alternative for methiocarb and formed transformation products abatement. Cruz-Alcalde A; Sans C; Esplugas S Chemosphere; 2017 Nov; 186():725-732. PubMed ID: 28820996 [TBL] [Abstract][Full Text] [Related]
3. Degradation of cyanotoxin cylindrospermopsin by TiO2-assisted ozonation in water. Wu CC; Huang WJ; Ji BH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(11):1116-26. PubMed ID: 26191986 [TBL] [Abstract][Full Text] [Related]
4. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity. Hamdi El Najjar N; Touffet A; Deborde M; Journel R; Leitner NK Chemosphere; 2013 Oct; 93(4):604-11. PubMed ID: 23850240 [TBL] [Abstract][Full Text] [Related]
5. Ozonation of ofloxacin in water: by-products, degradation pathway and ecotoxicity assessment. Tay KS; Madehi N Sci Total Environ; 2015 Jul; 520():23-31. PubMed ID: 25791053 [TBL] [Abstract][Full Text] [Related]
6. Insights into influencing factor, degradation mechanism and potential toxicity involved in aqueous ozonation of oxcarbazepine (CHEM46939R1). Wang T; Huang ZX; Miao HF; Ruan WQ; Ji XP; Sun FB; Zhao MX; Ren HY Chemosphere; 2018 Jun; 201():189-196. PubMed ID: 29524819 [TBL] [Abstract][Full Text] [Related]
7. Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms. Zou R; Liao X; Zhao L; Yuan B Environ Sci Pollut Res Int; 2018 May; 25(14):13489-13498. PubMed ID: 29492817 [TBL] [Abstract][Full Text] [Related]
8. Ozonation for the removal of bisphenol A. Mutseyekwa ME; Doğan Ş; Pirgalıoğlu S Water Sci Technol; 2017 Nov; 76(9-10):2764-2775. PubMed ID: 29168716 [TBL] [Abstract][Full Text] [Related]
9. Degradation of sulfadimethoxine by permanganate in aquatic environment: Influence factors, intermediate products and theoretical study. Zhuang J; Wang S; Tan Y; Xiao R; Chen J; Wang X; Jiang L; Wang Z Sci Total Environ; 2019 Jun; 671():705-713. PubMed ID: 30939323 [TBL] [Abstract][Full Text] [Related]
10. Achieving realistic ozonation conditions with synthetic water matrices comprising low-molecular-weight scavenger compounds. Rath SA; von Gunten U Water Res; 2024 Sep; 261():121917. PubMed ID: 39013231 [TBL] [Abstract][Full Text] [Related]
11. Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways. Guo WQ; Yin RL; Zhou XJ; Du JS; Cao HO; Yang SS; Ren NQ Ultrason Sonochem; 2015 Jan; 22():182-7. PubMed ID: 25107668 [TBL] [Abstract][Full Text] [Related]
12. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation. De Vera GA; Stalter D; Gernjak W; Weinberg HS; Keller J; Farré MJ Water Res; 2015 Dec; 87():49-58. PubMed ID: 26378731 [TBL] [Abstract][Full Text] [Related]
13. Study on the kinetics and transformation products of salicylic acid in water via ozonation. Hu R; Zhang L; Hu J Chemosphere; 2016 Jun; 153():394-404. PubMed ID: 27031802 [TBL] [Abstract][Full Text] [Related]
14. Phosphate helps to recover from scavenging effect of chloride in self-enhanced ozonation. Fijołek L; Nawrocki J Chemosphere; 2018 Dec; 212():802-810. PubMed ID: 30189407 [TBL] [Abstract][Full Text] [Related]
15. Investigation of ozonation kinetics and transformation products of sucralose. Hu R; Zhang L; Hu J Sci Total Environ; 2017 Dec; 603-604():8-17. PubMed ID: 28614740 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and mechanistic study on degradation of prednisone acetate by ozone. He X; Huang H; Tang Y; Guo L J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(3):292-304. PubMed ID: 31769340 [TBL] [Abstract][Full Text] [Related]
17. Hydroxyl radicals can significantly influence the toxicity of ofloxacin transformation products during ozonation. He Y; Cai Y; Fan S; Meng T; Zhang Y; Li X; Zhang Y J Hazard Mater; 2022 Sep; 438():129503. PubMed ID: 35999735 [TBL] [Abstract][Full Text] [Related]
18. Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process. Chen WR; Sharpless CM; Linden KG; Suffet IH Environ Sci Technol; 2006 Apr; 40(8):2734-9. PubMed ID: 16683616 [TBL] [Abstract][Full Text] [Related]
19. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects. Mestankova H; Parker AM; Bramaz N; Canonica S; Schirmer K; von Gunten U; Linden KG Water Res; 2016 Apr; 93():110-120. PubMed ID: 26900972 [TBL] [Abstract][Full Text] [Related]
20. Identification of degradation products of erythromycin A arising from ozone and advanced oxidation process treatment. Luiz DB; Genena AK; Virmond E; José HJ; Moreira RF; Gebhardt W; Schröder HF Water Environ Res; 2010; 82(9):797-805. PubMed ID: 20942335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]