These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30145436)

  • 1. GPU-DAEMON: GPU algorithm design, data management & optimization template for array based big omics data.
    Awan MG; Eslami T; Saeed F
    Comput Biol Med; 2018 Oct; 101():163-173. PubMed ID: 30145436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TurboBFS: GPU Based Breadth-First Search (BFS) Algorithms in the Language of Linear Algebra.
    Artiles O; Saeed F
    IEEE Int Symp Parallel Distrib Process Workshops Phd Forum; 2021 Jun; 2021():520-528. PubMed ID: 35425667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Out-of-Core GPU based dimensionality reduction algorithm for Big Mass Spectrometry Data and its application in bottom-up Proteomics.
    Awan MG; Saeed F
    ACM BCB; 2017 Aug; 2017():550-555. PubMed ID: 28868521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.
    Mejía-Roa E; Tabas-Madrid D; Setoain J; García C; Tirado F; Pascual-Montano A
    BMC Bioinformatics; 2015 Feb; 16():43. PubMed ID: 25887585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hadoop-MCC: Efficient Multiple Compound Comparison Algorithm Using Hadoop.
    Hua GJ; Hung CL; Tang CY
    Comb Chem High Throughput Screen; 2018; 21(2):84-92. PubMed ID: 29295690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WFA-GPU: gap-affine pairwise read-alignment using GPUs.
    Aguado-Puig Q; Doblas M; Matzoros C; Espinosa A; Moure JC; Marco-Sola S; Moreto M
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 37975878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU-acceleration of the distributed-memory database peptide search of mass spectrometry data.
    Haseeb M; Saeed F
    Sci Rep; 2023 Oct; 13(1):18713. PubMed ID: 37907498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
    Tian Z; Peng F; Folkerts M; Tan J; Jia X; Jiang SB
    Med Phys; 2015 Jun; 42(6):2841-52. PubMed ID: 26127037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards an efficient and Energy-Aware mobile big health data architecture.
    Navaz AN; Serhani MA; Al-Qirim N; Gergely M
    Comput Methods Programs Biomed; 2018 Nov; 166():137-154. PubMed ID: 30415713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TurboBC: A Memory Efficient and Scalable GPU Based Betweenness Centrality Algorithm in the Language of Linear Algebra.
    Artiles O; Saeed F
    Proc Int Workshops Parallel Proc; 2021 Aug; 2021():. PubMed ID: 35440894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
    Neylon J; Sheng K; Yu V; Chen Q; Low DA; Kupelian P; Santhanam A
    Med Phys; 2014 Oct; 41(10):101711. PubMed ID: 25281950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs.
    Arefin AS; Riveros C; Berretta R; Moscato P
    PLoS One; 2012; 7(8):e44000. PubMed ID: 22937144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
    Petrini A; Mesiti M; Schubach M; Frasca M; Danis D; Re M; Grossi G; Cappelletti L; Castrignanò T; Robinson PN; Valentini G
    Gigascience; 2020 May; 9(5):. PubMed ID: 32444882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
    Cui JY; Pratx G; Prevrhal S; Levin CS
    Med Phys; 2011 Dec; 38(12):6775-86. PubMed ID: 22149859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient parallel implementation of active appearance model fitting algorithm on GPU.
    Wang J; Ma X; Zhu Y; Sun J
    ScientificWorldJournal; 2014; 2014():528080. PubMed ID: 24723812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient implementation of the 3D-DDA ray traversal algorithm on GPU and its application in radiation dose calculation.
    Xiao K; Chen DZ; Hu XS; Zhou B
    Med Phys; 2012 Dec; 39(12):7619-25. PubMed ID: 23231309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPU accelerated dynamic functional connectivity analysis for functional MRI data.
    Akgün D; Sakoğlu Ü; Esquivel J; Adinoff B; Mete M
    Comput Med Imaging Graph; 2015 Jul; 43():53-63. PubMed ID: 25805449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization.
    Fang Y; Chen Q; Xiong NN; Zhao D; Wang J
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28777325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.