BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30145521)

  • 21. The promotional effect of water-soluble extractives on the enzymatic cellulose hydrolysis of pretreated wheat straw.
    Smit AT; Huijgen WJJ
    Bioresour Technol; 2017 Nov; 243():994-999. PubMed ID: 28753744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remarkable solvent and extractable lignin effects on enzymatic digestibility of organosolv pretreated hardwood.
    Lai C; Tu M; Li M; Yu S
    Bioresour Technol; 2014 Mar; 156():92-9. PubMed ID: 24495536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic surfactant-assisted [EMIM]OAc pretreatment of lignocellulosic waste for enhanced cellulose accessibility to cellulase.
    Goshadrou A; Lefsrud M
    Carbohydr Polym; 2017 Jun; 166():104-113. PubMed ID: 28385212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pilot-scale steam explosion pretreatment with 2-naphthol to overcome high softwood recalcitrance.
    Pielhop T; Amgarten J; Studer MH; von Rohr PR
    Biotechnol Biofuels; 2017; 10():130. PubMed ID: 28529543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of bleaching on subcritical water- and Formosolv-pretreated tulip tree to enhance enzyme accessibility.
    Myint AA; Kim DS; Lee HW; Yoon J; Choi IG; Choi JW; Lee YW
    Bioresour Technol; 2013 Oct; 145():128-32. PubMed ID: 23566470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate-enzyme adsorption.
    Zheng W; Lan T; Li H; Yue G; Zhou H
    Biotechnol Biofuels; 2020; 13():19. PubMed ID: 32015757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of surfactants on pretreatment of corn stover.
    Qing Q; Yang B; Wyman CE
    Bioresour Technol; 2010 Aug; 101(15):5941-51. PubMed ID: 20304637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin.
    Akimkulova A; Zhou Y; Zhao X; Liu D
    Bioresour Technol; 2016 May; 208():110-116. PubMed ID: 26930032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.
    Li Y; Qi B; Luo J; Wan Y
    Bioresour Technol; 2016 Jan; 200():272-8. PubMed ID: 26496216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the action of Tween 20 non-ionic surfactant during enzymatic hydrolysis of lignocellulose: Pretreatment, hydrolysis conditions and lignin structure.
    Chen YA; Zhou Y; Qin Y; Liu D; Zhao X
    Bioresour Technol; 2018 Dec; 269():329-338. PubMed ID: 30195225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin.
    Zhang Y; Jiang X; Wan S; Wu W; Wu S; Jin Y
    J Biotechnol; 2020 Nov; 323():1-8. PubMed ID: 32693090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dual effects of lignin content on enzymatic hydrolysis using film composed of cellulose and lignin as a structure model.
    Zhang L; Zhang L; Zhou T; Wu Y; Xu F
    Bioresour Technol; 2016 Jan; 200():761-9. PubMed ID: 26575618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate.
    Lou H; Wang M; Lai H; Lin X; Zhou M; Yang D; Qiu X
    Bioresour Technol; 2013 Oct; 146():478-484. PubMed ID: 23958680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin.
    Cai C; Qiu X; Zeng M; Lin M; Lin X; Lou H; Zhan X; Pang Y; Huang J; Xie L
    Bioresour Technol; 2017 Mar; 227():74-81. PubMed ID: 28013139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings.
    Kumar L; Chandra R; Saddler J
    Biotechnol Bioeng; 2011 Oct; 108(10):2300-11. PubMed ID: 21520024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave-assisted Organosolv pretreatment of a sawmill mixed feedstock for bioethanol production in a wood biorefinery.
    Alio MA; Tugui OC; Vial C; Pons A
    Bioresour Technol; 2019 Mar; 276():170-176. PubMed ID: 30623872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses.
    Lou H; Zhu JY; Lan TQ; Lai H; Qiu X
    ChemSusChem; 2013 May; 6(5):919-27. PubMed ID: 23554287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of dilute acid and flowthrough pretreatments and BSA supplementation on enzymatic deconstruction of poplar by cellulase and xylanase.
    Bhagia S; Kumar R; Wyman CE
    Carbohydr Polym; 2017 Feb; 157():1940-1948. PubMed ID: 27987914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis.
    Kellock M; Maaheimo H; Marjamaa K; Rahikainen J; Zhang H; Holopainen-Mantila U; Ralph J; Tamminen T; Felby C; Kruus K
    Bioresour Technol; 2019 May; 280():303-312. PubMed ID: 30776657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Four Types of Chemical Pretreatment on Enzymatic Hydrolysis by SEM, XRD and FTIR Analysis.
    Jin SG; Zhang GM; Zhang PY; Zhou JC; Gao YW; Shi JN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1966-70. PubMed ID: 30053362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.