BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 30146296)

  • 1. Lactic acid treatment of by-products and phosphorus level in the diet modulate bacterial microbiome and the predicted metagenome functions using the rumen simulation technique.
    Metzler-Zebeli BU; Haselmann A; Klevenhusen F; Knaus W; Zebeli Q
    J Dairy Sci; 2018 Nov; 101(11):9800-9814. PubMed ID: 30146296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of grain with organic acids at 2 different dietary phosphorus levels modulates ruminal microbial community structure and fermentation patterns in vitro.
    Harder H; Khol-Parisini A; Metzler-Zebeli BU; Klevenhusen F; Zebeli Q
    J Dairy Sci; 2015 Nov; 98(11):8107-20. PubMed ID: 26299164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats.
    Zhang XM; Medrano RF; Wang M; Beauchemin KA; Ma ZY; Wang R; Wen JN; Lukuyu BA; Tan ZL; He JH
    J Anim Sci; 2019 Dec; 97(12):4999-5008. PubMed ID: 31740932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows.
    Neubauer V; Petri R; Humer E; Kröger I; Mann E; Reisinger N; Wagner M; Zebeli Q
    J Dairy Sci; 2018 Mar; 101(3):2335-2349. PubMed ID: 29331466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro.
    Ertl P; Knaus W; Metzler-Zebeli BU; Klevenhusen F; Khiaosa-Ard R; Zebeli Q
    J Dairy Sci; 2015 Jul; 98(7):4762-71. PubMed ID: 25981072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro.
    Mickdam E; Khiaosa-Ard R; Metzler-Zebeli BU; Klevenhusen F; Chizzola R; Zebeli Q
    Anaerobe; 2016 Jun; 39():4-13. PubMed ID: 26868619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary Phytase- and Lactic Acid-Treated Cereals Caused Greater Taxonomic Adaptations than Functional Adaptations in the Cecal Metagenome of Growing Pigs.
    Klinsoda J; Vötterl J; Koger S; Metzler-Zebeli BU
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis.
    Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ
    J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graded substitution of grains with bakery by-products modulates ruminal fermentation, nutrient degradation, and microbial community composition in vitro.
    Humer E; Aditya S; Kaltenegger A; Klevenhusen F; Petri RM; Zebeli Q
    J Dairy Sci; 2018 Apr; 101(4):3085-3098. PubMed ID: 29428759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dietary supplementation of rumen-protected folic acid on rumen fermentation, degradability and excretion of urinary purine derivatives in growing steers.
    Wang C; Liu Q; Guo G; Huo W; Ma L; Zhang Y; Pei C; Zhang S; Wang H
    Arch Anim Nutr; 2016 Dec; 70(6):441-54. PubMed ID: 27666679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with
    Miguel M; Lee SS; Mamuad L; Choi YJ; Jeong CD; Son A; Cho KK; Kim ET; Kim SB; Lee SS
    J Microbiol Biotechnol; 2019 Jul; 29(7):1083-1095. PubMed ID: 31216841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of ruminal fermentation, epithelium-associated microbiota, and epithelial barrier function to severe feed restriction in pregnant ewes.
    Hu F; Xue Y; Guo C; Liu J; Mao S
    J Anim Sci; 2018 Sep; 96(10):4293-4305. PubMed ID: 30272228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota.
    Mao S; Huo W; Liu J; Zhang R; Zhu W
    J Sci Food Agric; 2017 Mar; 97(4):1276-1285. PubMed ID: 27339112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term high-grain diet altered the ruminal pH, fermentation, and composition and functions of the rumen bacterial community, leading to enhanced lactic acid production in Japanese Black beef cattle during fattening.
    Ogata T; Makino H; Ishizuka N; Iwamoto E; Masaki T; Ikuta K; Kim YH; Sato S
    PLoS One; 2019; 14(11):e0225448. PubMed ID: 31770419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets.
    Zhou YW; McSweeney CS; Wang JK; Liu JX
    Animal; 2012 May; 6(5):815-23. PubMed ID: 22558929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.
    Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT
    Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of clay mineral supplementation on particle-associated and epimural microbiota, and gene expression in the rumen of cows fed high-concentrate diet.
    Neubauer V; Humer E; Mann E; Kröger I; Reisinger N; Wagner M; Zebeli Q; Petri RM
    Anaerobe; 2019 Oct; 59():38-48. PubMed ID: 31102775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.
    Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ
    J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.