BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 30146316)

  • 1. Accurate Recycling of Parental Histones Reproduces the Histone Modification Landscape during DNA Replication.
    Reverón-Gómez N; González-Aguilera C; Stewart-Morgan KR; Petryk N; Flury V; Graziano S; Johansen JV; Jakobsen JS; Alabert C; Groth A
    Mol Cell; 2018 Oct; 72(2):239-249.e5. PubMed ID: 30146316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two distinct modes for propagation of histone PTMs across the cell cycle.
    Alabert C; Barth TK; Reverón-Gómez N; Sidoli S; Schmidt A; Jensen ON; Imhof A; Groth A
    Genes Dev; 2015 Mar; 29(6):585-90. PubMed ID: 25792596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of modified H2A-H2B provides short-term memory of chromatin states.
    Flury V; Reverón-Gómez N; Alcaraz N; Stewart-Morgan KR; Wenger A; Klose RJ; Groth A
    Cell; 2023 Mar; 186(5):1050-1065.e19. PubMed ID: 36750094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle.
    Halsall JA; Andrews S; Krueger F; Rutledge CE; Ficz G; Reik W; Turner BM
    Sci Rep; 2021 Feb; 11(1):3009. PubMed ID: 33542322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of parental histones preserves the epigenetic landscape during embryonic development.
    Mühlen D; Li X; Dovgusha O; Jäckle H; Günesdogan U
    Sci Adv; 2023 Feb; 9(5):eadd6440. PubMed ID: 36724233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication.
    Bellelli R; Belan O; Pye VE; Clement C; Maslen SL; Skehel JM; Cherepanov P; Almouzni G; Boulton SJ
    Mol Cell; 2018 Oct; 72(1):112-126.e5. PubMed ID: 30217558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation during DNA Replication.
    Escobar TM; Oksuz O; Saldaña-Meyer R; Descostes N; Bonasio R; Reinberg D
    Cell; 2019 Oct; 179(4):953-963.e11. PubMed ID: 31675501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin.
    Svensson JP; Shukla M; Menendez-Benito V; Norman-Axelsson U; Audergon P; Sinha I; Tanny JC; Allshire RC; Ekwall K
    Genome Res; 2015 Jun; 25(6):872-83. PubMed ID: 25778913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.
    Corpet A; Almouzni G
    Trends Cell Biol; 2009 Jan; 19(1):29-41. PubMed ID: 19027300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution visualization of H3 variants during replication reveals their controlled recycling.
    Clément C; Orsi GA; Gatto A; Boyarchuk E; Forest A; Hajj B; Miné-Hattab J; Garnier M; Gurard-Levin ZA; Quivy JP; Almouzni G
    Nat Commun; 2018 Aug; 9(1):3181. PubMed ID: 30093638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone lysine methylation and chromatin replication.
    Rivera C; Gurard-Levin ZA; Almouzni G; Loyola A
    Biochim Biophys Acta; 2014 Dec; 1839(12):1433-9. PubMed ID: 24686120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin challenges during DNA replication and repair.
    Groth A; Rocha W; Verreault A; Almouzni G
    Cell; 2007 Feb; 128(4):721-33. PubMed ID: 17320509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeat RNAs associate with replication forks and post-replicative DNA.
    Gylling HM; Gonzalez-Aguilera C; Smith MA; Kaczorowski DC; Groth A; Lund AH
    RNA; 2020 Sep; 26(9):1104-1117. PubMed ID: 32393525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usage of the H3 variants during the S-phase of the cell cycle in Physarum polycephalum.
    Thiriet C
    Nucleic Acids Res; 2022 Mar; 50(5):2536-2548. PubMed ID: 35137186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The patterns and participants of parental histone recycling during DNA replication in Saccharomyces cerevisiae.
    Shan Z; Zhang Y; Bu J; Li H; Zhang Z; Xiong J; Zhu B
    Sci China Life Sci; 2023 Jul; 66(7):1600-1614. PubMed ID: 36914923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin replication and epigenetic cell memory.
    Stewart-Morgan KR; Petryk N; Groth A
    Nat Cell Biol; 2020 Apr; 22(4):361-371. PubMed ID: 32231312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin Replication and Histone Dynamics.
    Alabert C; Jasencakova Z; Groth A
    Adv Exp Med Biol; 2017; 1042():311-333. PubMed ID: 29357065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How is epigenetic information on chromatin inherited after DNA replication?
    Nakatani Y; Tagami H; Shestakova E
    Ernst Schering Res Found Workshop; 2006; (57):89-96. PubMed ID: 16568950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring chromatin after replication: how new and old histone marks come together.
    Jasencakova Z; Groth A
    Semin Cell Dev Biol; 2010 Apr; 21(2):231-7. PubMed ID: 19815085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safeguarding the epigenome through the cell cycle: a multitasking game.
    Flury V; Groth A
    Curr Opin Genet Dev; 2024 Apr; 85():102161. PubMed ID: 38447236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.