These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30146322)

  • 1. Diverging beam transmit through limited aperture: A method to reduce ultrasound system complexity and yet obtain better image quality at higher frame rates.
    Lokesh B; Thittai AK
    Ultrasonics; 2019 Jan; 91():150-160. PubMed ID: 30146322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverging beam with synthetic aperture technique for rotation elastography: preliminary experimental results.
    Lokesh B; Thittai AK
    Phys Med Biol; 2018 Oct; 63(20):20LT01. PubMed ID: 30222126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ω-k Algorithm for Sparse-Transmit Sparse-Receive Diverging Beam Synthetic Aperture Transmit Scheme.
    Chandramoorthi S; Thittai AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2046-2056. PubMed ID: 32746169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of element pitch on synthetic aperture ultrasound imaging.
    Hasegawa H; de Korte CL
    J Med Ultrason (2001); 2016 Jul; 43(3):317-25. PubMed ID: 26896949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressed Sensing Approach for Reducing the Number of Receive Elements in Synthetic Transmit Aperture Imaging.
    Ramkumar A; Thittai AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2012-2021. PubMed ID: 32746160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual stage beamforming in the absence of front-end receive focusing.
    Bera D; Bosch JG; Verweij MD; de Jong N; Vos HJ
    Phys Med Biol; 2017 Jul; 62(16):6631-6648. PubMed ID: 28604358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of the Complete Data Set From Focused Transmit Beams.
    Bottenus N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):30-38. PubMed ID: 29283345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming.
    Hasegawa H; Kanai H
    J Med Ultrason (2001); 2011 Jul; 38(3):129-40. PubMed ID: 27278500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Synthetic Transmit Aperture Imaging Using Hadamard-Encoded Virtual Sources With Overlapping Sub-Apertures.
    Ping Gong ; Pengfei Song ; Shigao Chen
    IEEE Trans Med Imaging; 2017 Jun; 36(6):1372-1381. PubMed ID: 28358677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming.
    Rasmussen MF; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1638-50. PubMed ID: 25265174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
    Vos HJ; van Neer PL; Mota MM; Verweij MD; van der Steen AF; Volker AW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):60-71. PubMed ID: 26571525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic aperture techniques with a virtual source element.
    Frazier CH; O'Brien WR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):196-207. PubMed ID: 18244172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressed Sensing Based Synthetic Transmit Aperture Imaging: Validation in a Convex Array Configuration.
    Liu J; He Q; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):300-315. PubMed ID: 28320658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral Resolution Improvement in Ultrasound Imaging System using Compressed Sensing: Initial Results.
    Anand R; Thittai AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2727-2730. PubMed ID: 31946458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optimization of ultrasound beamforming sound velocity using sub-aperture differential phase gradient.
    Shen CC; Yang HC
    Ultrasonics; 2017 Aug; 79():52-59. PubMed ID: 28432914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):511-23. PubMed ID: 25768817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benefits of minimum-variance beamforming in medical ultrasound imaging.
    Synnevag JF; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1868-79. PubMed ID: 19811990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved contrast for high frame rate imaging using coherent compounding combined with spatial matched filtering.
    Lou Y; Yen JT
    Ultrasonics; 2017 Jul; 78():152-161. PubMed ID: 28351747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential beamforming for synthetic aperture imaging.
    Kortbek J; Jensen JA; Gammelmark KL
    Ultrasonics; 2013 Jan; 53(1):1-16. PubMed ID: 22809678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of ultrasound synthetic aperture imaging using bidirectional pixel-based focusing: preliminary phantom and in vivo breast study.
    Kim C; Yoon C; Park JH; Lee Y; Kim WH; Chang JM; Choi BI; Song TK; Yoo YM
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2716-24. PubMed ID: 23686939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.