BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30146412)

  • 1. SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function.
    Sun J; He X; Zhu Y; Ding Z; Dong H; Feng Y; Du J; Wang H; Wu X; Zhang L; Yu X; Lin A; McDonald T; Zhao D; Wu H; Hua WK; Zhang B; Feng L; Tohyama K; Bhatia R; Oberdoerffer P; Chung YJ; Aplan PD; Boultwood J; Pellagatti A; Khaled S; Kortylewski M; Pichiorri F; Kuo YH; Carlesso N; Marcucci G; Jin H; Li L
    Cell Stem Cell; 2018 Sep; 23(3):355-369.e9. PubMed ID: 30146412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-catalytic Roles of Tet2 Are Essential to Regulate Hematopoietic Stem and Progenitor Cell Homeostasis.
    Ito K; Lee J; Chrysanthou S; Zhao Y; Josephs K; Sato H; Teruya-Feldstein J; Zheng D; Dawlaty MM; Ito K
    Cell Rep; 2019 Sep; 28(10):2480-2490.e4. PubMed ID: 31484061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia.
    Man N; Mas G; Karl DL; Sun J; Liu F; Yang Q; Torres-Martin M; Itonaga H; Martinez C; Chen S; Xu Y; Duffort S; Hamard PJ; Chen C; Zucconi BE; Cimmino L; Yang FC; Xu M; Cole PA; Figueroa ME; Nimer SD
    JCI Insight; 2021 Oct; 6(19):. PubMed ID: 34622806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression.
    Cimmino L; Dolgalev I; Wang Y; Yoshimi A; Martin GH; Wang J; Ng V; Xia B; Witkowski MT; Mitchell-Flack M; Grillo I; Bakogianni S; Ndiaye-Lobry D; Martín MT; Guillamot M; Banh RS; Xu M; Figueroa ME; Dickins RA; Abdel-Wahab O; Park CY; Tsirigos A; Neel BG; Aifantis I
    Cell; 2017 Sep; 170(6):1079-1095.e20. PubMed ID: 28823558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation.
    Song SJ; Ito K; Ala U; Kats L; Webster K; Sun SM; Jongen-Lavrencic M; Manova-Todorova K; Teruya-Feldstein J; Avigan DE; Delwel R; Pandolfi PP
    Cell Stem Cell; 2013 Jul; 13(1):87-101. PubMed ID: 23827711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome.
    Hasegawa N; Oshima M; Sashida G; Matsui H; Koide S; Saraya A; Wang C; Muto T; Takane K; Kaneda A; Shimoda K; Nakaseko C; Yokote K; Iwama A
    Leukemia; 2017 Apr; 31(4):861-871. PubMed ID: 27694924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of RUNX3 Represses RUNX1 to Drive Transformation of Myelodysplastic Syndrome.
    Yokomizo-Nakano T; Kubota S; Bai J; Hamashima A; Morii M; Sun Y; Katagiri S; Iimori M; Kanai A; Tanaka D; Oshima M; Harada Y; Ohyashiki K; Iwama A; Harada H; Osato M; Sashida G
    Cancer Res; 2020 Jun; 80(12):2523-2536. PubMed ID: 32341038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting miR-126 disrupts maintenance of myelodysplastic syndrome stem and progenitor cells.
    Wang H; Sun J; Zhang B; Zhao D; Tong H; Wu H; Li X; Luo Y; Dong D; Yao Y; McDonald T; Stein AS; Al Malki MM; Pichiorri F; Carlesso N; Kuo YH; Marcucci G; Li L; Jin J
    Clin Transl Med; 2021 Oct; 11(10):e610. PubMed ID: 34709739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to microbial products followed by loss of Tet2 promotes myelodysplastic syndrome via remodeling HSCs.
    Yokomizo-Nakano T; Hamashima A; Kubota S; Bai J; Sorin S; Sun Y; Kikuchi K; Iimori M; Morii M; Kanai A; Iwama A; Huang G; Kurotaki D; Takizawa H; Matsui H; Sashida G
    J Exp Med; 2023 Jul; 220(7):. PubMed ID: 37071125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant Alternative Splicing in U2af1/Tet2 Double Mutant Mice Contributes to Major Hematological Phenotypes.
    Martínez-Valiente C; Garcia-Ruiz C; Rosón B; Liquori A; González-Romero E; Fernández-González R; Gómez-Redondo I; Cervera J; Gutiérrez-Adán A; Sanjuan-Pla A
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34203454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders.
    Muto T; Sashida G; Oshima M; Wendt GR; Mochizuki-Kashio M; Nagata Y; Sanada M; Miyagi S; Saraya A; Kamio A; Nagae G; Nakaseko C; Yokote K; Shimoda K; Koseki H; Suzuki Y; Sugano S; Aburatani H; Ogawa S; Iwama A
    J Exp Med; 2013 Nov; 210(12):2627-39. PubMed ID: 24218139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TET2 Loss Dysregulates the Behavior of Bone Marrow Mesenchymal Stromal Cells and Accelerates Tet2
    Li R; Zhou Y; Cao Z; Liu L; Wang J; Chen Z; Xing W; Chen S; Bai J; Yuan W; Cheng T; Xu M; Yang FC; Zhao Z
    Stem Cell Reports; 2018 Jan; 10(1):166-179. PubMed ID: 29290626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of TET2 in CD3⁺ and CD34⁺ cells of myelodysplastic syndromes and enhances CD34⁺ cells proliferation.
    Zhang W; Shao Z; Fu R; Wang H; Li L; Liu H
    Int J Clin Exp Pathol; 2015; 8(9):10840-6. PubMed ID: 26617797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis.
    Cai Z; Kotzin JJ; Ramdas B; Chen S; Nelanuthala S; Palam LR; Pandey R; Mali RS; Liu Y; Kelley MR; Sandusky G; Mohseni M; Williams A; Henao-Mejia J; Kapur R
    Cell Stem Cell; 2018 Dec; 23(6):833-849.e5. PubMed ID: 30526882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic lethal targeting of TET2-mutant hematopoietic stem and progenitor cells (HSPCs) with TOP1-targeted drugs and PARP1 inhibitors.
    Jing CB; Fu C; Prutsch N; Wang M; He S; Look AT
    Leukemia; 2020 Nov; 34(11):2992-3006. PubMed ID: 32572188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sirt1 ablation promotes stress-induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance.
    Singh SK; Williams CA; Klarmann K; Burkett SS; Keller JR; Oberdoerffer P
    J Exp Med; 2013 May; 210(5):987-1001. PubMed ID: 23630229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased 5-hydroxymethylcytosine levels are associated with TET2 mutation and unfavorable overall survival in myelodysplastic syndromes.
    Liu X; Zhang G; Yi Y; Xiao L; Pei M; Liu S; Luo Y; Zhong H; Xu Y; Zheng W; Shen J
    Leuk Lymphoma; 2013 Nov; 54(11):2466-73. PubMed ID: 23432690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells.
    Jin X; Qin T; Zhao M; Bailey N; Liu L; Yang K; Ng V; Higashimoto T; Coolon R; Ney G; Figueroa ME; Li Q
    Blood Adv; 2018 Jun; 2(11):1259-1271. PubMed ID: 29866713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquired mutations in TET2 are common in myelodysplastic syndromes.
    Langemeijer SM; Kuiper RP; Berends M; Knops R; Aslanyan MG; Massop M; Stevens-Linders E; van Hoogen P; van Kessel AG; Raymakers RA; Kamping EJ; Verhoef GE; Verburgh E; Hagemeijer A; Vandenberghe P; de Witte T; van der Reijden BA; Jansen JH
    Nat Genet; 2009 Jul; 41(7):838-42. PubMed ID: 19483684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TET2 mutations as a part of DNA dioxygenase deficiency in myelodysplastic syndromes.
    Gurnari C; Pagliuca S; Guan Y; Adema V; Hershberger CE; Ni Y; Awada H; Kongkiatkamon S; Zawit M; Coutinho DF; Zalcberg IR; Ahn JS; Kim HJ; Kim DDH; Minden MD; Jansen JH; Meggendorfer M; Haferlach C; Jha BK; Haferlach T; Maciejewski JP; Visconte V
    Blood Adv; 2022 Jan; 6(1):100-107. PubMed ID: 34768283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.