These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 30146938)
1. Sensitivity analysis for non-monotone missing binary data in longitudinal studies: Application to the NIDA collaborative cocaine treatment study. Fitzmaurice GM; Lipsitz SR; Weiss RD Stat Methods Med Res; 2019; 28(10-11):3057-3073. PubMed ID: 30146938 [TBL] [Abstract][Full Text] [Related]
2. Methods for handling missing binary data in substance use disorder trials. Ren B; Lipsitz SR; Weiss RD; Fitzmaurice GM Drug Alcohol Depend; 2023 Sep; 250():110897. PubMed ID: 37544038 [TBL] [Abstract][Full Text] [Related]
3. Multiple imputation for non-monotone missing not at random data using the no self-censoring model. Ren B; Lipsitz SR; Weiss RD; Fitzmaurice GM Stat Methods Med Res; 2023 Oct; 32(10):1973-1993. PubMed ID: 37647237 [TBL] [Abstract][Full Text] [Related]
4. Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes. Lipsitz SR; Fitzmaurice GM; Weiss RD Psychometrika; 2020 Dec; 85(4):890-904. PubMed ID: 33006740 [TBL] [Abstract][Full Text] [Related]
5. Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study. Welch CA; Sabia S; Brunner E; Kivimäki M; Shipley MJ BMC Med Res Methodol; 2018 Aug; 18(1):89. PubMed ID: 30157752 [TBL] [Abstract][Full Text] [Related]
6. Power difference in a χ Miller ML; Roe DJ; Hu C; Bell ML BMC Med Res Methodol; 2020 Mar; 20(1):50. PubMed ID: 32122312 [TBL] [Abstract][Full Text] [Related]
7. A monotone data augmentation algorithm for multivariate nonnormal data: With applications to controlled imputations for longitudinal trials. Tang Y Stat Med; 2019 May; 38(10):1715-1733. PubMed ID: 30565281 [TBL] [Abstract][Full Text] [Related]
8. Imputation strategies for missing binary outcomes in cluster randomized trials. Ma J; Akhtar-Danesh N; Dolovich L; Thabane L; BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148 [TBL] [Abstract][Full Text] [Related]
9. Practical and statistical issues in missing data for longitudinal patient-reported outcomes. Bell ML; Fairclough DL Stat Methods Med Res; 2014 Oct; 23(5):440-59. PubMed ID: 23427225 [TBL] [Abstract][Full Text] [Related]
10. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
11. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
12. Analysis of crossover designs for longitudinal binary data with ignorable and nonignorable dropout. Wang X; Chinchilli VM Stat Methods Med Res; 2022 Jan; 31(1):119-138. PubMed ID: 34779672 [TBL] [Abstract][Full Text] [Related]
13. Bayesian sensitivity analyses for longitudinal data with dropouts that are potentially missing not at random: A high dimensional pattern-mixture model. Kaciroti NA; Little RJA Stat Med; 2021 Sep; 40(21):4609-4628. PubMed ID: 34405912 [TBL] [Abstract][Full Text] [Related]
14. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings. Donneau AF; Mauer M; Lambert P; Molenberghs G; Albert A J Biopharm Stat; 2015; 25(3):570-601. PubMed ID: 24905056 [TBL] [Abstract][Full Text] [Related]
15. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial. Siddique J; Harel O; Crespi CM; Hedeker D Stat Med; 2014 Jul; 33(17):3013-28. PubMed ID: 24634315 [TBL] [Abstract][Full Text] [Related]
16. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout. Tang Y Stat Med; 2018 Apr; 37(9):1467-1481. PubMed ID: 29333672 [TBL] [Abstract][Full Text] [Related]
17. Multiple imputation of missing values was not necessary before performing a longitudinal mixed-model analysis. Twisk J; de Boer M; de Vente W; Heymans M J Clin Epidemiol; 2013 Sep; 66(9):1022-8. PubMed ID: 23790725 [TBL] [Abstract][Full Text] [Related]
18. Application of pattern mixture models to address missing data in longitudinal data analysis using SPSS. Son H; Friedmann E; Thomas SA Nurs Res; 2012; 61(3):195-203. PubMed ID: 22551994 [TBL] [Abstract][Full Text] [Related]
19. Treatment effects in randomized longitudinal trials with different types of nonignorable dropout. Yang M; Maxwell SE Psychol Methods; 2014 Jun; 19(2):188-210. PubMed ID: 24079928 [TBL] [Abstract][Full Text] [Related]
20. An analytic method for the placebo-based pattern-mixture model. Lu K Stat Med; 2014 Mar; 33(7):1134-45. PubMed ID: 24122822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]