These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30147063)

  • 1. Modeling Activity Tracker Data Using Deep Boltzmann Machines.
    Treppner M; Lenz S; Binder H; Zöller D
    Stud Health Technol Inform; 2018; 253():155-159. PubMed ID: 30147063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep generative models in DataSHIELD.
    Lenz S; Hess M; Binder H
    BMC Med Res Methodol; 2021 Apr; 21(1):64. PubMed ID: 33812380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Accurate Is Your Activity Tracker? A Comparative Study of Step Counts in Low-Intensity Physical Activities.
    Alinia P; Cain C; Fallahzadeh R; Shahrokni A; Cook D; Ghasemzadeh H
    JMIR Mhealth Uhealth; 2017 Aug; 5(8):e106. PubMed ID: 28801304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Network-Based Algorithm for Adjusting Activity Targets to Sustain Exercise Engagement Among People Using Activity Trackers: Retrospective Observation and Algorithm Development Study.
    Mohammadi R; Atif M; Centi AJ; Agboola S; Jethwani K; Kvedar J; Kamarthi S
    JMIR Mhealth Uhealth; 2020 Sep; 8(9):e18142. PubMed ID: 32897235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of Fitbit Use and Activity Levels Throughout a Physical Activity Intervention: Exploratory Analysis from a Randomized Controlled Trial.
    Hartman SJ; Nelson SH; Weiner LS
    JMIR Mhealth Uhealth; 2018 Feb; 6(2):e29. PubMed ID: 29402761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode-assisted joint training of deep Boltzmann machines.
    Manukian H; Di Ventra M
    Sci Rep; 2021 Sep; 11(1):19000. PubMed ID: 34561505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants for Sustained Use of an Activity Tracker: Observational Study.
    Hermsen S; Moons J; Kerkhof P; Wiekens C; De Groot M
    JMIR Mhealth Uhealth; 2017 Oct; 5(10):e164. PubMed ID: 29084709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the usefulness of hidden units in Boltzmann machines with mutual information.
    Berglund M; Raiko T; Cho K
    Neural Netw; 2015 Apr; 64():12-8. PubMed ID: 25318376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioned learning of deep Boltzmann machines for SNP data.
    Hess M; Lenz S; Blätte TJ; Bullinger L; Binder H
    Bioinformatics; 2017 Oct; 33(20):3173-3180. PubMed ID: 28655145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring generative deep learning for omics data using log-linear models.
    Hess M; Hackenberg M; Binder H
    Bioinformatics; 2020 Dec; 36(20):5045-5053. PubMed ID: 32647888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers.
    Liu J; Yao KT; Spedalieri F
    Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33286970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic observations from deep generative models and binary omics data with limited sample size.
    Nußberger J; Boesel F; Lenz S; Binder H; Hess M
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33003196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wearable activity tracker intervention for promoting physical activity in adolescents with juvenile idiopathic arthritis: a pilot study.
    Heale LD; Dover S; Goh YI; Maksymiuk VA; Wells GD; Feldman BM
    Pediatr Rheumatol Online J; 2018 Oct; 16(1):66. PubMed ID: 30348203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient learning procedure for deep Boltzmann machines.
    Salakhutdinov R; Hinton G
    Neural Comput; 2012 Aug; 24(8):1967-2006. PubMed ID: 22509963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic single cell RNA sequencing data from small pilot studies using deep generative models.
    Treppner M; Salas-Bastos A; Hess M; Lenz S; Vogel T; Binder H
    Sci Rep; 2021 Apr; 11(1):9403. PubMed ID: 33931726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representational power of restricted boltzmann machines and deep belief networks.
    Le Roux N; Bengio Y
    Neural Comput; 2008 Jun; 20(6):1631-49. PubMed ID: 18254699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceptance of Commercially Available Wearable Activity Trackers Among Adults Aged Over 50 and With Chronic Illness: A Mixed-Methods Evaluation.
    Mercer K; Giangregorio L; Schneider E; Chilana P; Li M; Grindrod K
    JMIR Mhealth Uhealth; 2016 Jan; 4(1):e7. PubMed ID: 26818775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Social Networkout": Connecting Social Features of Wearable Fitness Trackers with Physical Exercise.
    Zhu Y; Dailey SL; Kreitzberg D; Bernhardt J
    J Health Commun; 2017 Dec; 22(12):974-980. PubMed ID: 29173072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Where do features come from?
    Hinton G
    Cogn Sci; 2014 Aug; 38(6):1078-101. PubMed ID: 23800216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering binary codes for documents by learning deep generative models.
    Hinton G; Salakhutdinov R
    Top Cogn Sci; 2011 Jan; 3(1):74-91. PubMed ID: 25164175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.