These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30147229)

  • 1. An effect of the tubular baffles configuration in an agitated vessel with a high-speed impeller on the power consumption.
    Major-Godlewska M; Karcz J
    Chem Zvesti; 2018; 72(11):2933-2943. PubMed ID: 30147229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power consumption for an agitated vessel equipped with pitched blade turbine and short baffles.
    Major-Godlewska M; Karcz J
    Chem Zvesti; 2018; 72(5):1081-1088. PubMed ID: 29681681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of mycelial morphology on impeller type and agitation intensity.
    Jüsten P; Paul GC; Nienow AW; Thomas CR
    Biotechnol Bioeng; 1996 Dec; 52(6):672-84. PubMed ID: 18629946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-liquid dispersion with dual Rushton turbine impellers.
    Hudcova V; Machon V; Nienow AW
    Biotechnol Bioeng; 1989 Aug; 34(5):617-28. PubMed ID: 18588146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data on the agitation of a viscous Newtonian fluid by radial impellers in a cylindrical tank.
    Ameur H; Kamla Y; Sahel D
    Data Brief; 2017 Dec; 15():752-756. PubMed ID: 29124103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Baffle Clearance on Scale Deposition in an Agitated Vessel.
    Sato E; Ochi Y; Horiguchi H; Takenaka K; Wu J; Parthasarathy R; Komoda Y; Ohmura N
    ACS Omega; 2021 Sep; 6(37):24070-24074. PubMed ID: 34568685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of copper powder from aqueous solution by cementation using an agitated vessel.
    Amin NK; El-Ashtouky ES; Abdelwahab O
    Environ Technol; 2014; 35(9-12):1208-18. PubMed ID: 24701917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macro-instability: a chaotic flow component in stirred tanks.
    Hasal P; Jahoda M; Fort I
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):409-18. PubMed ID: 17673415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of impeller type and mechanical agitation on the mass transfer and power consumption aspects of ASBR operation treating synthetic wastewater.
    Michelan R; Zimmer TR; Rodrigues JA; Ratusznei SM; de Moraes D; Zaiat M; Foresti E
    J Environ Manage; 2009 Mar; 90(3):1357-64. PubMed ID: 18814952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD simulation of silica dispersion/natural rubber latex mixing for high silica content rubber composite production.
    Phumnok E; Saetiao P; Bumphenkiattikul P; Rattanawilai S; Khongprom P
    RSC Adv; 2024 Apr; 14(18):12612-12623. PubMed ID: 38638820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Internal Intermittency, Large Scale Inhomogeneity, and Impeller Type on Drop Size Distribution in Turbulent Liquid-Liquid Dispersions.
    Podgórska W
    Entropy (Basel); 2019 Mar; 21(4):. PubMed ID: 33267054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller.
    Gelves R; Dietrich A; Takors R
    Bioprocess Biosyst Eng; 2014 Mar; 37(3):365-75. PubMed ID: 23828243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic Analysis of Methane-Propane Hydrate Formation by the Use of Different Impellers.
    Longinos SN; Parlaktuna M
    ACS Omega; 2021 Jan; 6(2):1636-1646. PubMed ID: 33490823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas-Liquid Contactors' Aeration Capacities When Agitated by Rushton Turbines of Various Diameters.
    Kracík T; Moucha T; Petříček R
    ACS Omega; 2020 Mar; 5(10):5072-5077. PubMed ID: 32201793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes.
    Karimi A; Golbabaei F; Mehrnia MR; Neghab M; Mohammad K; Nikpey A; Pourmand MR
    Iranian J Environ Health Sci Eng; 2013 Jan; 10(1):6. PubMed ID: 23369581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of impeller geometry on gas-liquid mass transfer coefficients in filamentous suspensions.
    Dronawat SN; Svihla CK; Hanley TR
    Appl Biochem Biotechnol; 1997; 63-65():363-73. PubMed ID: 18576095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations.
    Ungerman AJ; Heindel TJ
    Biotechnol Prog; 2007; 23(3):613-20. PubMed ID: 17326659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of stirrers for screening studies of enzymatic biomass hydrolyses on a milliliter scale.
    Riedlberger P; Brüning S; Weuster-Botz D
    Bioprocess Biosyst Eng; 2013 Jul; 36(7):927-35. PubMed ID: 23010724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Impeller Geometry on the 11α-Hydroxylation of Canrenone in Rushton Turbine-Stirred Tanks.
    Rong S; Tang X; Guan S; Zhang B; Li Q; Cai B; Huang J
    J Microbiol Biotechnol; 2021 Jun; 31(6):890-901. PubMed ID: 34024892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrofit of CD-6 (Smith) impeller in fermentation vessels.
    Junker BH; Mann Z; Hunt G
    Appl Biochem Biotechnol; 2000 Oct; 89(1):67-83. PubMed ID: 11069009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.