These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 30147654)

  • 1. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging.
    de Lucia C; Eguchi A; Koch WJ
    Front Pharmacol; 2018; 9():904. PubMed ID: 30147654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications.
    Triposkiadis F; Karayannis G; Giamouzis G; Skoularigis J; Louridas G; Butler J
    J Am Coll Cardiol; 2009 Nov; 54(19):1747-62. PubMed ID: 19874988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GRK2 inhibition in heart failure: something old, something new.
    Lymperopoulos A; Rengo G; Koch WJ
    Curr Pharm Des; 2012; 18(2):186-91. PubMed ID: 22229578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adrenergic nervous system in heart failure: pathophysiology and therapy.
    Lymperopoulos A; Rengo G; Koch WJ
    Circ Res; 2013 Aug; 113(6):739-53. PubMed ID: 23989716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy.
    Cannavo A; Liccardo D; Koch WJ
    Front Physiol; 2013 Sep; 4():264. PubMed ID: 24133451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Caloric Restriction Improves Cardiac Function, Remodeling, Adrenergic Responsiveness, and Sympathetic Innervation in a Model of Postischemic Heart Failure.
    de Lucia C; Gambino G; Petraglia L; Elia A; Komici K; Femminella GD; D'Amico ML; Formisano R; Borghetti G; Liccardo D; Nolano M; Houser SR; Leosco D; Ferrara N; Koch WJ; Rengo G
    Circ Heart Fail; 2018 Mar; 11(3):e004153. PubMed ID: 29535114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and Lipidomic Mapping of Macrophages in the Hub of Chronic Beta-Adrenergic-Stimulation Unravels Hypertrophy-, Proliferation-, and Lipid Metabolism-Related Genes as Novel Potential Markers of Early Hypertrophy or Heart Failure.
    Nadaud S; Flamant M; Le Goff W; Balse E; Pavoine C
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-Adrenergic Receptor Desensitization/Down-Regulation in Heart Failure: A Friend or Foe?
    Mahmood A; Ahmed K; Zhang Y
    Front Cardiovasc Med; 2022; 9():925692. PubMed ID: 35845057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-adrenergic receptor signalling and its functional consequences in the diseased heart.
    Najafi A; Sequeira V; Kuster DW; van der Velden J
    Eur J Clin Invest; 2016 Apr; 46(4):362-74. PubMed ID: 26842371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of cardiac dysfunction in developing and adult zebrafish by chronic isoproterenol stimulation.
    Kossack M; Hein S; Juergensen L; Siragusa M; Benz A; Katus HA; Most P; Hassel D
    J Mol Cell Cardiol; 2017 Jul; 108():95-105. PubMed ID: 28554511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in cardiac electrophysiology and calcium handling in response to sympathetic nerve stimulation.
    Francis Stuart SD; Wang L; Woodard WR; Ng GA; Habecker BA; Ripplinger CM
    J Physiol; 2018 Sep; 596(17):3977-3991. PubMed ID: 29938794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of exercise training on cardiovascular adrenergic system.
    Leosco D; Parisi V; Femminella GD; Formisano R; Petraglia L; Allocca E; Bonaduce D
    Front Physiol; 2013 Nov; 4():348. PubMed ID: 24348425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic manipulation of myocardial beta-adrenergic receptor activation and desensitization.
    Hata JA; Williams ML; Koch WJ
    J Mol Cell Cardiol; 2004 Jul; 37(1):11-21. PubMed ID: 15242731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adrenergic signaling in heart failure: a balance of toxic and protective effects.
    Baker AJ
    Pflugers Arch; 2014 Jun; 466(6):1139-50. PubMed ID: 24623099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of adrenergic signaling in cardiac myocytes and implications for pharmacological treatment.
    Meyer EE; Clancy CE; Lewis TJ
    J Theor Biol; 2021 Jun; 519():110619. PubMed ID: 33740423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology and pharmacology of the cardiovascular adrenergic system.
    Lymperopoulos A
    Front Physiol; 2013 Sep; 4():240. PubMed ID: 24027534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurohumoral activation in heart failure: the role of adrenergic receptors.
    Brum PC; Rolim NP; Bacurau AV; Medeiros A
    An Acad Bras Cienc; 2006 Sep; 78(3):485-503. PubMed ID: 16936938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of β-adrenoceptors restores the GRK2-mediated adrenal α(2) -adrenoceptor-catecholamine production axis in heart failure.
    Rengo G; Lymperopoulos A; Zincarelli C; Femminella G; Liccardo D; Pagano G; de Lucia C; Cannavo A; Gargiulo P; Ferrara N; Perrone Filardi P; Koch W; Leosco D
    Br J Pharmacol; 2012 Aug; 166(8):2430-40. PubMed ID: 22519418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The myocardial beta-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats.
    Anderson KM; Eckhart AD; Willette RN; Koch WJ
    Hypertension; 1999 Jan; 33(1 Pt 2):402-7. PubMed ID: 9931137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function, and prevents sudden arrhythmic death in failing hearts.
    Joshi P; Estes S; DeMazumder D; Knollmann BC; Dey S
    Elife; 2023 Dec; 12():. PubMed ID: 38078905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.