These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30147802)

  • 1. Goal-Directed Reasoning and Cooperation in Robots in Shared Workspaces: an Internal Simulation Based Neural Framework.
    Bhat AA; Mohan V
    Cognit Comput; 2018; 10(4):558-576. PubMed ID: 30147802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics.
    Mohan V; Bhat A; Morasso P
    Phys Life Rev; 2019 Oct; 30():89-111. PubMed ID: 29903532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.
    Baykal C; Torres LG; Alterovitz R
    Rep U S; 2015 Sep; 2015():4381-4387. PubMed ID: 26951790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards reasoning and coordinating action in the mental space.
    Mohan V; Morasso P
    Int J Neural Syst; 2007 Aug; 17(4):329-41. PubMed ID: 17696296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontology based autonomous robot task processing framework.
    Ge Y; Zhang S; Cai Y; Lu T; Wang H; Hui X; Wang S
    Front Neurorobot; 2024; 18():1401075. PubMed ID: 38774519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network-based exploratory learning and motor planning system for co-robots.
    Galbraith BV; Guenther FH; Versace M
    Front Neurorobot; 2015; 9():7. PubMed ID: 26257640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the body-schema concept in the context of whole-body postural-focal dynamics.
    Morasso P; Casadio M; Mohan V; Rea F; Zenzeri J
    Front Hum Neurosci; 2015; 9():83. PubMed ID: 25741274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can a robot teach me that? Children's ability to imitate robots.
    Sommer K; Slaughter V; Wiles J; Owen K; Chiba AA; Forster D; Malmir M; Nielsen M
    J Exp Child Psychol; 2021 Mar; 203():105040. PubMed ID: 33302129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-Oriented Robot Cognitive Manipulation Planning Using Affordance Segmentation and Logic Reasoning.
    Wang Z; Tian G
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully body visual self-modeling of robot morphologies.
    Chen B; Kwiatkowski R; Vondrick C; Lipson H
    Sci Robot; 2022 Jul; 7(68):eabn1944. PubMed ID: 35857575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Versatile Continuum Gripping Robot with a Concealable Gripper.
    Zhang S; Li F; Fu R; Li H; Zou S; Ma N; Qu S; Li J
    Cyborg Bionic Syst; 2023; 4():0003. PubMed ID: 37040519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart Sensing and Adaptive Reasoning for Enabling Industrial Robots with Interactive Human-Robot Capabilities in Dynamic Environments-A Case Study.
    Zabalza J; Fei Z; Wong C; Yan Y; Mineo C; Yang E; Rodden T; Mehnen J; Pham QC; Ren J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion planning framework based on dual-agent DDPG method for dual-arm robots guided by human joint angle constraints.
    Liang K; Zha F; Guo W; Liu S; Wang P; Sun L
    Front Neurorobot; 2024; 18():1362359. PubMed ID: 38455735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Software Platform for Quadruped Robots with Advanced Manipulation Capabilities.
    Yi JB; Nasrat S; Jo MS; Yi SJ
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiments in Artificial Theory of Mind: From Safety to Story-Telling.
    Winfield AFT
    Front Robot AI; 2018; 5():75. PubMed ID: 33500954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigation in Unknown Dynamic Environments Based on Deep Reinforcement Learning.
    Zeng J; Ju R; Qin L; Hu Y; Yin Q; Hu C
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31491927
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.