BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30149587)

  • 1. Boron-Implanted Silicon Substrates for Physical Adsorption of DNA Origami.
    Takabayashi S; Kotani S; Flores-Estrada J; Spears E; Padilla JE; Godwin LC; Graugnard E; Kuang W; Sills S; Hughes WL
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces.
    Teshome B; Facsko S; Keller A
    Nanoscale; 2014; 6(3):1790-6. PubMed ID: 24352681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays.
    Gopinath A; Rothemund PW
    ACS Nano; 2014 Dec; 8(12):12030-40. PubMed ID: 25412345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks.
    Ramakrishnan S; Subramaniam S; Stewart AF; Grundmeier G; Keller A
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31239-31247. PubMed ID: 27779405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.
    Shen B; Linko V; Dietz H; Toppari JJ
    Electrophoresis; 2015 Jan; 36(2):255-62. PubMed ID: 25225147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation.
    Pillers MA; Shute R; Farchone A; Linder KP; Doerfler R; Gavin C; Goss V; Lieberman M
    J Vis Exp; 2015 Jul; (101):e52972. PubMed ID: 26274888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Templated assembly of DNA origami gold nanoparticle arrays on lithographically patterned surfaces.
    Hung AM; Cha JN
    Methods Mol Biol; 2011; 749():187-97. PubMed ID: 21674373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami.
    Hung AM; Micheel CM; Bozano LD; Osterbur LW; Wallraff GM; Cha JN
    Nat Nanotechnol; 2010 Feb; 5(2):121-6. PubMed ID: 20023644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed placement of three-dimensional DNA origami.
    Martynenko IV; Erber E; Ruider V; Dass M; Posnjak G; Yin X; Altpeter P; Liedl T
    Nat Nanotechnol; 2023 Dec; 18(12):1456-1462. PubMed ID: 37640908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided deposition of individual DNA nanostructures on silicon substrates.
    Gao B; Sarveswaran K; Bernstein GH; Lieberman M
    Langmuir; 2010 Aug; 26(15):12680-3. PubMed ID: 20590122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.
    Lämmerhardt N; Merzsch S; Ledig J; Bora A; Waag A; Tornow M; Mischnick P
    Langmuir; 2013 Jul; 29(26):8410-6. PubMed ID: 23786592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors.
    Fu Y; Zeng D; Chao J; Jin Y; Zhang Z; Liu H; Li D; Ma H; Huang Q; Gothelf KV; Fan C
    J Am Chem Soc; 2013 Jan; 135(2):696-702. PubMed ID: 23237536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step large-scale deposition of salt-free DNA origami nanostructures.
    Linko V; Shen B; Tapio K; Toppari JJ; Kostiainen MA; Tuukkanen S
    Sci Rep; 2015 Oct; 5():15634. PubMed ID: 26492833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.
    Zhan P; Dutta PK; Wang P; Song G; Dai M; Zhao SX; Wang ZG; Yin P; Zhang W; Ding B; Ke Y
    ACS Nano; 2017 Feb; 11(2):1172-1179. PubMed ID: 28056172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA nanostructure meets nanofabrication.
    Zhang G; Surwade SP; Zhou F; Liu H
    Chem Soc Rev; 2013 Apr; 42(7):2488-96. PubMed ID: 23059622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-beam lithography and molecular liftoff for directed attachment of DNA nanostructures on silicon: top-down meets bottom-up.
    Pillers M; Goss V; Lieberman M
    Acc Chem Res; 2014 Jun; 47(6):1759-67. PubMed ID: 24716716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From nonfinite to finite 1D arrays of origami tiles.
    Wu TC; Rahman M; Norton ML
    Acc Chem Res; 2014 Jun; 47(6):1750-8. PubMed ID: 24803094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Custom-shaped metal nanostructures based on DNA origami silhouettes.
    Shen B; Linko V; Tapio K; Kostiainen MA; Toppari JJ
    Nanoscale; 2015 Jul; 7(26):11267-72. PubMed ID: 26066528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions.
    Mahalingam V; Onclin S; Péter M; Ravoo BJ; Huskens J; Reinhoudt DN
    Langmuir; 2004 Dec; 20(26):11756-62. PubMed ID: 15595808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.