These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 30149701)
1. Polymethyldopa Nanoparticles-Based Fluorescent Sensor for Detection of Tyrosinase Activity. Liu G; Zhao J; Lu S; Wang S; Sun J; Yang X ACS Sens; 2018 Sep; 3(9):1855-1862. PubMed ID: 30149701 [TBL] [Abstract][Full Text] [Related]
2. A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters. Huang X; Zhao H; Qiu W; Wang J; Guo L; Lin Z; Pan W; Wu Y; Qiu B Mikrochim Acta; 2020 Mar; 187(4):240. PubMed ID: 32198661 [TBL] [Abstract][Full Text] [Related]
3. In Situ Fluorogenic and Chromogenic Reactions for the Sensitive Dual-Readout Assay of Tyrosinase Activity. Zhao J; Bao X; Wang S; Lu S; Sun J; Yang X Anal Chem; 2017 Oct; 89(19):10529-10536. PubMed ID: 28891289 [TBL] [Abstract][Full Text] [Related]
4. A self-correcting fluorescent assay of tyrosinase based on Fe-MIL-88B-NH Sun Y; Lin T; Zeng C; Jiang G; Zhang X; Ye F; Zhao S Mikrochim Acta; 2021 Apr; 188(5):158. PubMed ID: 33825048 [TBL] [Abstract][Full Text] [Related]
5. Ratiometric target-triggered fluorescent silicon nanoparticles probe for quantitative visualization of tyrosinase activity. Ding YZ; Wang WF; Chai T; Qiang Y; Shi YP; Yang JL Talanta; 2019 May; 197():113-121. PubMed ID: 30771911 [TBL] [Abstract][Full Text] [Related]
6. Fluorescent covalent organic framework as an ultrasensitive fluorescent probe for tyrosinase activity monitoring and inhibitor screening. Liu H; Liu W; Li Y; Jiang X; Wang S; Zhang G; Luo X; Zhao Y Anal Chim Acta; 2024 Sep; 1320():343026. PubMed ID: 39142791 [TBL] [Abstract][Full Text] [Related]
7. A colorimetric and near -infrared ratiometric fluorescent probe for the determination of endogenous tyrosinase activity based on cyanine aggregation. Zhang P; Li S; Fu C; Zhang Q; Xiao Y; Ding C Analyst; 2019 Sep; 144(18):5472-5478. PubMed ID: 31384852 [TBL] [Abstract][Full Text] [Related]
8. A turn-on fluorescent probe for detection of tyrosinase activity. Wang C; Yan S; Huang R; Feng S; Fu B; Weng X; Zhou X Analyst; 2013 May; 138(10):2825-8. PubMed ID: 23571425 [TBL] [Abstract][Full Text] [Related]
9. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Yan X; Li H; Zheng W; Su X Anal Chem; 2015 Sep; 87(17):8904-9. PubMed ID: 26249217 [TBL] [Abstract][Full Text] [Related]
10. A highly selective naphthalimide-based ratiometric fluorescent probe for the recognition of tyrosinase and cellular imaging. Singh Sidhu J; Singh A; Garg N; Kaur N; Singh N Analyst; 2018 Sep; 143(18):4476-4483. PubMed ID: 30156587 [TBL] [Abstract][Full Text] [Related]
11. The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA-CoOOH. Zhang H; Wang Z; Yang X; Li ZL; Sun L; Ma J; Jiang H Anal Chim Acta; 2019 Nov; 1080():170-177. PubMed ID: 31409467 [TBL] [Abstract][Full Text] [Related]
12. A fluorescent sensor based on methyldopa drug modified γ-Fe2O3 nanoparticles for ultrasensitive detection of calf thymus DNA. Shahabadi N; Maghsudi M; Kashanian S Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():104-109. PubMed ID: 26742013 [TBL] [Abstract][Full Text] [Related]
13. Near-infrared fluorescence nanoprobe for enzyme-substrate system sensing and in vitro imaging. Yan X; Hu T; Wang L; Zhang L; Su X Biosens Bioelectron; 2016 May; 79():922-9. PubMed ID: 26802574 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods. Biegunski AT; Michota A; Bukowska J; Jackowska K Bioelectrochemistry; 2006 Sep; 69(1):41-8. PubMed ID: 16423566 [TBL] [Abstract][Full Text] [Related]
15. Dual-Readout Tyrosinase Activity Assay Facilitated by a Chromo-Fluorogenic Reaction between Catechols and Naphthoresorcin. Zhao J; Liu G; Sun J; Wang Q; Li ZJ; Yang X Anal Chem; 2020 Jan; 92(2):2316-2322. PubMed ID: 31859491 [TBL] [Abstract][Full Text] [Related]
16. Highly Selective Fluorescent Probe Based on Hydroxylation of Phenylboronic Acid Pinacol Ester for Detection of Tyrosinase in Cells. Li H; Liu W; Zhang F; Zhu X; Huang L; Zhang H Anal Chem; 2018 Jan; 90(1):855-858. PubMed ID: 29198104 [TBL] [Abstract][Full Text] [Related]
17. The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism. Yang J; Chang R; Ge S; Zhao M; Liang C; Xiong L; Sun Q Food Funct; 2016 Dec; 7(12):4804-4815. PubMed ID: 27872930 [TBL] [Abstract][Full Text] [Related]
18. Fluorometric "AND" logic gate for detection of tyramine and tyrosinase based on in-situ formation of silicon-containing nanoparticles. Wang T; Liu F; Chen C; Lu Y Anal Chim Acta; 2024 Apr; 1298():342415. PubMed ID: 38462342 [TBL] [Abstract][Full Text] [Related]
19. Melanin-Like Nanoquencher on Graphitic Carbon Nitride Nanosheets for Tyrosinase Activity and Inhibitor Assay. Liu JW; Wang YM; Xu L; Duan LY; Tang H; Yu RQ; Jiang JH Anal Chem; 2016 Sep; 88(17):8355-8. PubMed ID: 27417635 [TBL] [Abstract][Full Text] [Related]
20. A two-photon fluorescent probe for intracellular detection of tyrosinase activity. Yan S; Huang R; Wang C; Zhou Y; Wang J; Fu B; Weng X; Zhou X Chem Asian J; 2012 Dec; 7(12):2782-5. PubMed ID: 23023989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]