BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30150288)

  • 1. Scaling of G1 Duration with Population Doubling Time by a Cyclin in
    Blank HM; Callahan M; Pistikopoulos IPE; Polymenis AO; Polymenis M
    Genetics; 2018 Nov; 210(3):895-906. PubMed ID: 30150288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The G1 cyclin Cln3p controls vacuolar biogenesis in Saccharomyces cerevisiae.
    Han BK; Aramayo R; Polymenis M
    Genetics; 2003 Oct; 165(2):467-76. PubMed ID: 14573462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size.
    Schmoller KM; Turner JJ; Kõivomägi M; Skotheim JM
    Nature; 2015 Oct; 526(7572):268-72. PubMed ID: 26390151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E.
    Danaie P; Altmann M; Hall MN; Trachsel H; Helliwell SB
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):135-41. PubMed ID: 10229668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins.
    Tyers M; Tokiwa G; Futcher B
    EMBO J; 1993 May; 12(5):1955-68. PubMed ID: 8387915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transcriptome-wide analysis deciphers distinct roles of G1 cyclins in temporal organization of the yeast cell cycle.
    Teufel L; Tummler K; Flöttmann M; Herrmann A; Barkai N; Klipp E
    Sci Rep; 2019 Mar; 9(1):3343. PubMed ID: 30833602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast.
    Polymenis M; Schmidt EV
    Genes Dev; 1997 Oct; 11(19):2522-31. PubMed ID: 9334317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast G1 cyclins are unstable in G1 phase.
    Schneider BL; Patton EE; Lanker S; Mendenhall MD; Wittenberg C; Futcher B; Tyers M
    Nature; 1998 Sep; 395(6697):86-9. PubMed ID: 9738503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daughter-specific transcription factors regulate cell size control in budding yeast.
    Di Talia S; Wang H; Skotheim JM; Rosebrock AP; Futcher B; Cross FR
    PLoS Biol; 2009 Oct; 7(10):e1000221. PubMed ID: 19841732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct subcellular localization patterns contribute to functional specificity of the Cln2 and Cln3 cyclins of Saccharomyces cerevisiae.
    Miller ME; Cross FR
    Mol Cell Biol; 2000 Jan; 20(2):542-55. PubMed ID: 10611233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperactive Ras disrupts cell size control and a key step in cell cycle entry in budding yeast.
    DeWitt JT; Chinwuba JC; Kellogg DR
    Genetics; 2023 Oct; 225(2):. PubMed ID: 37531631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry.
    Vergés E; Colomina N; Garí E; Gallego C; Aldea M
    Mol Cell; 2007 Jun; 26(5):649-62. PubMed ID: 17560371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae.
    Hall DD; Markwardt DD; Parviz F; Heideman W
    EMBO J; 1998 Aug; 17(15):4370-8. PubMed ID: 9687505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae.
    Bellí G; Garí E; Aldea M; Herrero E
    Mol Microbiol; 2001 Feb; 39(4):1022-35. PubMed ID: 11251821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85.
    Espinoza FH; Ogas J; Herskowitz I; Morgan DO
    Science; 1994 Nov; 266(5189):1388-91. PubMed ID: 7973730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle.
    Ferrezuelo F; Colomina N; Futcher B; Aldea M
    Genome Biol; 2010; 11(6):R67. PubMed ID: 20573214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start.
    Yahya G; Parisi E; Flores A; Gallego C; Aldea M
    Mol Cell; 2014 Jan; 53(1):115-26. PubMed ID: 24374311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential scaling between G1 protein production and cell size dynamics promotes commitment to the cell division cycle in budding yeast.
    Litsios A; Huberts DHEW; Terpstra HM; Guerra P; Schmidt A; Buczak K; Papagiannakis A; Rovetta M; Hekelaar J; Hubmann G; Exterkate M; Milias-Argeitis A; Heinemann M
    Nat Cell Biol; 2019 Nov; 21(11):1382-1392. PubMed ID: 31685990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of molecular noise and size control on variability in the budding yeast cell cycle.
    Di Talia S; Skotheim JM; Bean JM; Siggia ED; Cross FR
    Nature; 2007 Aug; 448(7156):947-51. PubMed ID: 17713537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bem1p, a scaffold signaling protein, mediates cyclin-dependent control of vacuolar homeostasis in Saccharomyces cerevisiae.
    Han BK; Bogomolnaya LM; Totten JM; Blank HM; Dangott LJ; Polymenis M
    Genes Dev; 2005 Nov; 19(21):2606-18. PubMed ID: 16230527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.