These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30150485)

  • 1. Delayed fatigue in finger flexion forces through transcutaneous nerve stimulation.
    Shin H; Chen R; Hu X
    J Neural Eng; 2018 Dec; 15(6):066005. PubMed ID: 30150485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced muscle fatigue using kilohertz-frequency subthreshold stimulation of the proximal nerve.
    Zheng Y; Hu X
    J Neural Eng; 2018 Dec; 15(6):066010. PubMed ID: 30179163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved muscle activation using proximal nerve stimulation with subthreshold current pulses at kilohertz-frequency.
    Zheng Y; Hu X
    J Neural Eng; 2018 Aug; 15(4):046001. PubMed ID: 29569574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMG activity of finger flexor muscles and grip force following low-dose transcutaneous electrical nerve stimulation in healthy adult subjects.
    Kafri M; Zaltsberg N; Dickstein R
    Somatosens Mot Res; 2015; 32(1):1-7. PubMed ID: 25059799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elicited Finger and Wrist Extension Through Transcutaneous Radial Nerve Stimulation.
    Zheng Y; Hu X
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1875-1882. PubMed ID: 31352346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multichannel Nerve Stimulation for Diverse Activation of Finger Flexors.
    Shin H; Hu X
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2361-2368. PubMed ID: 31634137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of M-Wave and H-Reflex in Hand Muscles Evoked via Transcutaneous Nerve Stimulation: A Preliminary Report.
    Vargas L; Baratta J; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5897-5900. PubMed ID: 34892461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle Fatigue Post-stroke Elicited From Kilohertz-Frequency Subthreshold Nerve Stimulation.
    Zheng Y; Shin H; Hu X
    Front Neurol; 2018; 9():1061. PubMed ID: 30564190
    [No Abstract]   [Full Text] [Related]  

  • 9. Activation of Superficial and Deep Finger Flexors Through Transcutaneous Nerve Stimulation.
    Shin H; Hawari MA; Hu X
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2575-2582. PubMed ID: 33259310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of antecedent TENS on EMG activity of the finger flexor muscles and on grip force.
    Dickstein R; Kafri M
    Somatosens Mot Res; 2008; 25(2):139-46. PubMed ID: 18570017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigation of excessive fatigue associated with functional electrical stimulation.
    Buckmire AJ; Arakeri TJ; Reinhard JP; Fuglevand AJ
    J Neural Eng; 2018 Dec; 15(6):066004. PubMed ID: 30168443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle activation pattern elicited through transcutaneous stimulation near the cervical spinal cord.
    Zheng Y; Hu X
    J Neural Eng; 2020 Feb; 17(1):016064. PubMed ID: 31791027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle fatigue estimation with twitch force derived from sEMG peaks.
    Na Y; Lee HD; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3492-5. PubMed ID: 26737045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces.
    Fuglevand AJ; Zackowski KM; Huey KA; Enoka RM
    J Physiol; 1993 Jan; 460():549-72. PubMed ID: 8387589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing muscle fatigue during transcutaneous neuromuscular electrical stimulation by spatially and sequentially distributing electrical stimulation sources.
    Sayenko DG; Nguyen R; Popovic MR; Masani K
    Eur J Appl Physiol; 2014 Apr; 114(4):793-804. PubMed ID: 24390690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing.
    Dupan SSG; Stegeman DF; Maas H
    Hum Mov Sci; 2018 Jun; 59():223-233. PubMed ID: 29738941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups.
    Sayenko DG; Nguyen R; Hirabayashi T; Popovic MR; Masani K
    Neurorehabil Neural Repair; 2015 Sep; 29(8):722-33. PubMed ID: 25549655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features.
    Zhou YX; Wang HP; Bao XL; Lü XY; Wang ZG
    J Neural Eng; 2016 Feb; 13(1):016004. PubMed ID: 26644193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand.
    Fuglevand AJ; Macefield VG; Bigland-Ritchie B
    J Neurophysiol; 1999 Apr; 81(4):1718-29. PubMed ID: 10200207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the force ripple during asynchronous and conventional stimulation.
    Downey RJ; Tate M; Kawai H; Dixon WE
    Muscle Nerve; 2014 Oct; 50(4):549-55. PubMed ID: 24481749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.