These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30150542)

  • 1. Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method.
    Chu L; Shi J; Ben S
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration Analysis of Vacancy Defected Graphene Sheets by Monte Carlo Based Finite Element Method.
    Chu L; Shi J; Souza de Cursi E
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30004459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Random Porosities in Resonant Frequencies of Graphene Based on the Monte Carlo Stochastic Finite Element Model.
    Chu L; Shi J; Yu Y; Souza De Cursi E
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects.
    Makwana M; Patel AM
    J Mol Model; 2023 Apr; 29(5):149. PubMed ID: 37074494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets.
    Setoodeh AR; Badjian H; Jahromi HS
    J Mol Model; 2017 Jan; 23(1):2. PubMed ID: 27924412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fingerprints of Resonant Frequency for Atomic Vacancy Defect Identification in Graphene.
    Chu L; Shi J; Souza de Cursi E
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buckling Behavior of Substrate Supported Graphene Sheets.
    Yang K; Chen Y; Pan F; Wang S; Ma Y; Liu Q
    Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons.
    Guo H; Wang J
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Uncertainty Propagation for Carbon Atomic Interactions in Graphene under Resonant Vibration Based on Stochastic Finite Element Model.
    Shi J; Chu L; Ma C; Braun R
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Investigation of the Fracture Mechanism of Defective Graphene Sheets.
    Fan N; Ren Z; Jing G; Guo J; Peng B; Jiang H
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method.
    Shi J; Chu L; Braun R
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31085983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.
    Xu L; Wei N; Zheng Y
    Nanotechnology; 2013 Dec; 24(50):505703. PubMed ID: 24270887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical molecular dynamic simulation of monolayer graphene with consideration of structural defects.
    Ranjbartoreh AR; Wang G
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1398-401. PubMed ID: 22629965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.
    Mehralian F; Tadi Beni Y; Kiani Y
    J Mol Graph Model; 2017 May; 73():30-35. PubMed ID: 28226271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube.
    Ranjbartoreh AR; Wang G
    Nanoscale Res Lett; 2011 Dec; 6(1):28. PubMed ID: 27502651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consideration of bending and buckling behaviors of monolayer and multilayer graphene sheets.
    Ranjbartoreh AR; Wang G
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1395-7. PubMed ID: 22629964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous strength characteristics of Stone-Thrower-Wales defects in graphene sheets - a molecular dynamics study.
    Juneja A; Rajasekaran G
    Phys Chem Chem Phys; 2018 Jun; 20(22):15203-15215. PubMed ID: 29789830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics analysis on buckling of defective carbon nanotubes.
    Kulathunga DD; Ang KK; Reddy JN
    J Phys Condens Matter; 2010 Sep; 22(34):345301. PubMed ID: 21403253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Defects on Regioselectivity of Nano Pristine Graphene.
    Kudur Jayaprakash G; Casillas N; Astudillo-Sánchez PD; Flores-Moreno R
    J Phys Chem A; 2016 Nov; 120(45):9101-9108. PubMed ID: 27797503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.