These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 30150587)

  • 1. Molecular Modeling Applied to Nucleic Acid-Based Molecule Development.
    Krüger A; Zimbres FM; Kronenberger T; Wrenger C
    Biomolecules; 2018 Aug; 8(3):. PubMed ID: 30150587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis].
    Han S; Zhao L; Yang G; Qu F
    Se Pu; 2021 Jul; 39(7):721-729. PubMed ID: 34227370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids.
    Macedo B; Cordeiro Y
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28513534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro selection procedures for identifying DNA and RNA aptamers targeted to nucleic acids and proteins.
    Dausse E; Cazenave C; Rayner B; Toulmé JJ
    Methods Mol Biol; 2005; 288():391-410. PubMed ID: 15333917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence in Aptamer-Target Binding Prediction.
    Chen Z; Hu L; Zhang BT; Lu A; Wang Y; Yu Y; Zhang G
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Positions of Bridging Water Molecules in Nucleic Acid-Ligand Complexes.
    Wei W; Luo J; Waldispühl J; Moitessier N
    J Chem Inf Model; 2019 Jun; 59(6):2941-2951. PubMed ID: 30998377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.
    Lipi F; Chen S; Chakravarthy M; Rakesh S; Veedu RN
    RNA Biol; 2016 Dec; 13(12):1232-1245. PubMed ID: 27715478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro selection of high-affinity nucleic acid ligands to parasite target molecules.
    Göringer HU; Homann M; Lorger M
    Int J Parasitol; 2003 Oct; 33(12):1309-17. PubMed ID: 14527514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and current status of computational methods for docking small molecules to nucleic acids.
    Luo J; Wei W; Waldispühl J; Moitessier N
    Eur J Med Chem; 2019 Apr; 168():414-425. PubMed ID: 30831409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands.
    Stoltenburg R; Reinemann C; Strehlitz B
    Biomol Eng; 2007 Oct; 24(4):381-403. PubMed ID: 17627883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches.
    Oliveira R; Pinho E; Sousa AL; DeStefano JJ; Azevedo NF; Almeida C
    Trends Biotechnol; 2022 May; 40(5):549-563. PubMed ID: 34756455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evolution of nucleic acids.
    Joyce GF
    Curr Opin Struct Biol; 1994; 4():331-6. PubMed ID: 11539574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods and Applications of In Silico Aptamer Design and Modeling.
    Buglak AA; Samokhvalov AV; Zherdev AV; Dzantiev BB
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling aptamers with nucleic acid mimics (NAM): From sequence to three-dimensional docking.
    Oliveira R; Pinho E; Sousa AL; Dias Ó; Azevedo NF; Almeida C
    PLoS One; 2022; 17(3):e0264701. PubMed ID: 35320268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Key Aspects of Nucleic Acid Library Design for in Vitro Selection.
    Vorobyeva MA; Davydova AS; Vorobjev PE; Venyaminova AG
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29401748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive recognition by nucleic acid aptamers.
    Hermann T; Patel DJ
    Science; 2000 Feb; 287(5454):820-5. PubMed ID: 10657289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico.
    Zhou Q; Xia X; Luo Z; Liang H; Shakhnovich E
    J Chem Theory Comput; 2015 Dec; 11(12):5939-46. PubMed ID: 26642994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery.
    Sheng J; Gan J; Huang Z
    Med Res Rev; 2013 Sep; 33(5):1119-73. PubMed ID: 23633219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Combined ELONA-(RT)qPCR Approach for Characterizing DNA and RNA Aptamers Selected against PCBP-2.
    Moreno M; Fernández-Algar M; Fernández-Chamorro J; Ramajo J; Martínez-Salas E; Briones C
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30925703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.