BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30150601)

  • 1. Modelling the Mass Transfer Process of Malvidin-3-Glucoside during Simulated Extraction from Fresh Grape Solids under Wine-Like Conditions.
    Setford PC; Jeffery DW; Grbin PR; Muhlack RA
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30150601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass Transfer of Anthocyanins during Extraction from Pre-Fermentative Grape Solids under Simulated Fermentation Conditions: Effect of Convective Conditions.
    Setford PC; Jeffery DW; Grbin PR; Muhlack RA
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30587796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modelling of anthocyanin mass transfer to predict extraction in simulated red wine fermentation scenarios.
    Setford PC; Jeffery DW; Grbin PR; Muhlack RA
    Food Res Int; 2019 Jul; 121():705-713. PubMed ID: 31108799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking.
    Favre G; Hermosín-Gutiérrez I; Piccardo D; Gómez-Alonso S; González-Neves G
    Food Chem; 2019 Mar; 277():391-397. PubMed ID: 30502162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and quantification of anthocyanins in Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin.
    Li Y; Ma R; Xu Z; Wang J; Chen T; Chen F; Wang Z
    J Sci Food Agric; 2013 Apr; 93(6):1404-11. PubMed ID: 23400926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside.
    Fanzone M; González-Manzano S; Pérez-Alonso J; Escribano-Bailón MT; Jofré V; Assof M; Santos-Buelga C
    Food Chem; 2015 May; 175():166-73. PubMed ID: 25577066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of grape variety, berry maturity and size on the extractability of skin polyphenols during model wine-like maceration experiments.
    Abi-Habib E; Poncet-Legrand C; Roi S; Carrillo S; Doco T; Vernhet A
    J Sci Food Agric; 2021 Jun; 101(8):3257-3269. PubMed ID: 33222281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malvidin-3- O-glucoside Chemical Behavior in the Wine pH Range.
    Forino M; Gambuti A; Luciano P; Moio L
    J Agric Food Chem; 2019 Jan; 67(4):1222-1229. PubMed ID: 30604613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico.
    Manfra M; De Nisco M; Bolognese A; Nuzzo V; Sofo A; Scopa A; Santi L; Tenore GC; Novellino E
    J Sci Food Agric; 2011 Dec; 91(15):2749-55. PubMed ID: 21800322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity.
    Nixdorf SL; Hermosín-Gutiérrez I
    Anal Chim Acta; 2010 Feb; 659(1-2):208-15. PubMed ID: 20103126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processes and purposes of extraction of grape components during winemaking: current state and perspectives.
    Unterkofler J; Muhlack RA; Jeffery DW
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4737-4755. PubMed ID: 32285174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthocyanin transformation in Cabernet Sauvignon wine during aging.
    Wang H; Race EJ; Shrikhande AJ
    J Agric Food Chem; 2003 Dec; 51(27):7989-94. PubMed ID: 14690384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine.
    Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA
    J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the pinking phenomenon of white wines.
    Andrea-Silva J; Cosme F; Ribeiro LF; Moreira AS; Malheiro AC; Coimbra MA; Domingues MR; Nunes FM
    J Agric Food Chem; 2014 Jun; 62(24):5651-9. PubMed ID: 24857316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of
    Escott C; Morata A; Ricardo-da-Silva JM; Callejo MJ; González MDC; Suarez-Lepe JA
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30223456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of Anthocyanins and Anthocyanin-Derived Pigments in Red Wine Grape Pomace Using LC-DAD/MS and MALDI-TOF Techniques.
    Oliveira J; Alhinho da Silva M; Teixeira N; De Freitas V; Salas E
    J Agric Food Chem; 2015 Sep; 63(35):7636-44. PubMed ID: 25912410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthocyanins from red wine--their stability under simulated gastrointestinal digestion.
    McDougall GJ; Fyffe S; Dobson P; Stewart D
    Phytochemistry; 2005 Nov; 66(21):2540-8. PubMed ID: 16242736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined phenolic extraction and fermentation reactor engineering model for multiphase red wine fermentation.
    Miller KV; Noguera R; Beaver J; Oberholster A; Block DE
    Biotechnol Bioeng; 2020 Jan; 117(1):109-116. PubMed ID: 31544954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).
    de la Cerda-Carrasco A; López-Solís R; Nuñez-Kalasic H; Peña-Neira Á; Obreque-Slier E
    J Sci Food Agric; 2015 May; 95(7):1521-7. PubMed ID: 25082193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro gastrointestinal absorption of red wine anthocyanins - Impact of structural complexity and phase II metabolization.
    Han F; Oliveira H; Brás NF; Fernandes I; Cruz L; De Freitas V; Mateus N
    Food Chem; 2020 Jul; 317():126398. PubMed ID: 32086122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.