These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 30150601)
1. Modelling the Mass Transfer Process of Malvidin-3-Glucoside during Simulated Extraction from Fresh Grape Solids under Wine-Like Conditions. Setford PC; Jeffery DW; Grbin PR; Muhlack RA Molecules; 2018 Aug; 23(9):. PubMed ID: 30150601 [TBL] [Abstract][Full Text] [Related]
2. Mass Transfer of Anthocyanins during Extraction from Pre-Fermentative Grape Solids under Simulated Fermentation Conditions: Effect of Convective Conditions. Setford PC; Jeffery DW; Grbin PR; Muhlack RA Molecules; 2018 Dec; 24(1):. PubMed ID: 30587796 [TBL] [Abstract][Full Text] [Related]
3. Mathematical modelling of anthocyanin mass transfer to predict extraction in simulated red wine fermentation scenarios. Setford PC; Jeffery DW; Grbin PR; Muhlack RA Food Res Int; 2019 Jul; 121():705-713. PubMed ID: 31108799 [TBL] [Abstract][Full Text] [Related]
4. Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking. Favre G; Hermosín-Gutiérrez I; Piccardo D; Gómez-Alonso S; González-Neves G Food Chem; 2019 Mar; 277():391-397. PubMed ID: 30502162 [TBL] [Abstract][Full Text] [Related]
5. Identification and quantification of anthocyanins in Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin. Li Y; Ma R; Xu Z; Wang J; Chen T; Chen F; Wang Z J Sci Food Agric; 2013 Apr; 93(6):1404-11. PubMed ID: 23400926 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Fanzone M; González-Manzano S; Pérez-Alonso J; Escribano-Bailón MT; Jofré V; Assof M; Santos-Buelga C Food Chem; 2015 May; 175():166-73. PubMed ID: 25577066 [TBL] [Abstract][Full Text] [Related]
7. Impact of grape variety, berry maturity and size on the extractability of skin polyphenols during model wine-like maceration experiments. Abi-Habib E; Poncet-Legrand C; Roi S; Carrillo S; Doco T; Vernhet A J Sci Food Agric; 2021 Jun; 101(8):3257-3269. PubMed ID: 33222281 [TBL] [Abstract][Full Text] [Related]
8. Malvidin-3- O-glucoside Chemical Behavior in the Wine pH Range. Forino M; Gambuti A; Luciano P; Moio L J Agric Food Chem; 2019 Jan; 67(4):1222-1229. PubMed ID: 30604613 [TBL] [Abstract][Full Text] [Related]
9. Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico. Manfra M; De Nisco M; Bolognese A; Nuzzo V; Sofo A; Scopa A; Santi L; Tenore GC; Novellino E J Sci Food Agric; 2011 Dec; 91(15):2749-55. PubMed ID: 21800322 [TBL] [Abstract][Full Text] [Related]
10. Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity. Nixdorf SL; Hermosín-Gutiérrez I Anal Chim Acta; 2010 Feb; 659(1-2):208-15. PubMed ID: 20103126 [TBL] [Abstract][Full Text] [Related]
11. Processes and purposes of extraction of grape components during winemaking: current state and perspectives. Unterkofler J; Muhlack RA; Jeffery DW Appl Microbiol Biotechnol; 2020 Jun; 104(11):4737-4755. PubMed ID: 32285174 [TBL] [Abstract][Full Text] [Related]
12. Anthocyanin transformation in Cabernet Sauvignon wine during aging. Wang H; Race EJ; Shrikhande AJ J Agric Food Chem; 2003 Dec; 51(27):7989-94. PubMed ID: 14690384 [TBL] [Abstract][Full Text] [Related]
13. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934 [TBL] [Abstract][Full Text] [Related]
14. Origin of the pinking phenomenon of white wines. Andrea-Silva J; Cosme F; Ribeiro LF; Moreira AS; Malheiro AC; Coimbra MA; Domingues MR; Nunes FM J Agric Food Chem; 2014 Jun; 62(24):5651-9. PubMed ID: 24857316 [TBL] [Abstract][Full Text] [Related]
16. Screening of Anthocyanins and Anthocyanin-Derived Pigments in Red Wine Grape Pomace Using LC-DAD/MS and MALDI-TOF Techniques. Oliveira J; Alhinho da Silva M; Teixeira N; De Freitas V; Salas E J Agric Food Chem; 2015 Sep; 63(35):7636-44. PubMed ID: 25912410 [TBL] [Abstract][Full Text] [Related]
17. Anthocyanins from red wine--their stability under simulated gastrointestinal digestion. McDougall GJ; Fyffe S; Dobson P; Stewart D Phytochemistry; 2005 Nov; 66(21):2540-8. PubMed ID: 16242736 [TBL] [Abstract][Full Text] [Related]
18. A combined phenolic extraction and fermentation reactor engineering model for multiphase red wine fermentation. Miller KV; Noguera R; Beaver J; Oberholster A; Block DE Biotechnol Bioeng; 2020 Jan; 117(1):109-116. PubMed ID: 31544954 [TBL] [Abstract][Full Text] [Related]
19. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). de la Cerda-Carrasco A; López-Solís R; Nuñez-Kalasic H; Peña-Neira Á; Obreque-Slier E J Sci Food Agric; 2015 May; 95(7):1521-7. PubMed ID: 25082193 [TBL] [Abstract][Full Text] [Related]
20. In vitro gastrointestinal absorption of red wine anthocyanins - Impact of structural complexity and phase II metabolization. Han F; Oliveira H; Brás NF; Fernandes I; Cruz L; De Freitas V; Mateus N Food Chem; 2020 Jul; 317():126398. PubMed ID: 32086122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]