BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30150614)

  • 1. Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function.
    Li X; Teitgen AM; Shirani A; Ling J; Busta L; Cahoon RE; Zhang W; Li Z; Chapman KD; Berman D; Zhang C; Minto RE; Cahoon EB
    Nat Plants; 2018 Sep; 4(9):711-720. PubMed ID: 30150614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intergrative metabolomic and transcriptomic analyses reveal the potential regulatory mechanism of unique dihydroxy fatty acid biosynthesis in the seeds of an industrial oilseed crop Orychophragmus violaceus.
    Jia C; Lai Q; Zhu Y; Feng J; Dan X; Zhang Y; Long Z; Wu J; Wang Z; Qumu X; Wang R; Wang J
    BMC Genomics; 2024 Jan; 25(1):29. PubMed ID: 38172664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome assembly of the Brassicaceae diploid Orychophragmus violaceus reveals complex whole-genome duplication and evolution of dihydroxy fatty acid metabolism.
    Huang F; Chen P; Tang X; Zhong T; Yang T; Nwafor CC; Yang C; Ge X; An H; Li Z; Cahoon EB; Zhang C
    Plant Commun; 2023 Mar; 4(2):100432. PubMed ID: 36071666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production.
    Lee KR; Chen GQ; Kim HU
    Plant Cell Rep; 2015 Apr; 34(4):603-15. PubMed ID: 25577331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR; Kang J; Qi X; Lu C
    Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.
    Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB
    Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome Analysis and Identification of Lipid Genes in
    Chen GQ; Kim WN; Johnson K; Park ME; Lee KR; Kim HU
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeds as oil factories.
    Baud S
    Plant Reprod; 2018 Sep; 31(3):213-235. PubMed ID: 29429143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.
    Iven T; Hornung E; Heilmann M; Feussner I
    Plant Biotechnol J; 2016 Jan; 14(1):252-9. PubMed ID: 25912558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata).
    Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y
    BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Metabolic engineering of edible plant oils].
    Yue AQ; Sun XP; Li RZ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):489-98. PubMed ID: 18349502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of
    Iskandarov U; Silva JE; Kim HJ; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB
    Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specialized lysophosphatidic acid acyltransferases contribute to unusual fatty acid accumulation in exotic Euphorbiaceae seed oils.
    Shockey J; Lager I; Stymne S; Kotapati HK; Sheffield J; Mason C; Bates PD
    Planta; 2019 May; 249(5):1285-1299. PubMed ID: 30610363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil.
    Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J
    Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-value oils from plants.
    Dyer JM; Stymne S; Green AG; Carlsson AS
    Plant J; 2008 May; 54(4):640-55. PubMed ID: 18476869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.
    Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R
    PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and transgenic perturbations of carbon reserve production in Arabidopsis seeds reveal metabolic interactions of biochemical pathways.
    Lin Y; Ulanov AV; Lozovaya V; Widholm J; Zhang G; Guo J; Goodman HM
    Planta; 2006 Dec; 225(1):153-64. PubMed ID: 16896794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic and Genome Editing Approaches for Modifying Plant Oils.
    Wayne LL; Gachotte DJ; Walsh TA
    Methods Mol Biol; 2019; 1864():367-394. PubMed ID: 30415347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.
    Bansal S; Durrett TP
    Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis.
    Kim HU; Chen GQ
    BMC Genomics; 2015 Mar; 16(1):230. PubMed ID: 25881190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.