BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30150693)

  • 1. Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice.
    Cataldi MP; Lu P; Blaeser A; Lu QL
    Nat Commun; 2018 Aug; 9(1):3448. PubMed ID: 30150693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ISPD Overexpression Enhances Ribitol-Induced Glycosylation of α-Dystroglycan in Dystrophic FKRP Mutant Mice.
    Cataldi MP; Blaeser A; Lu P; Leroy V; Lu QL
    Mol Ther Methods Clin Dev; 2020 Jun; 17():271-280. PubMed ID: 31988979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes.
    Ortiz-Cordero C; Magli A; Dhoke NR; Kuebler T; Selvaraj S; Oliveira NA; Zhou H; Sham YY; Bang AG; Perlingeiro RC
    Elife; 2021 Jan; 10():. PubMed ID: 33513091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDP-glycerol inhibits the synthesis of the functional
    Imae R; Manya H; Tsumoto H; Osumi K; Tanaka T; Mizuno M; Kanagawa M; Kobayashi K; Toda T; Endo T
    J Biol Chem; 2018 Aug; 293(31):12186-12198. PubMed ID: 29884773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of Functional Glycosylation of α-Dystroglycan in FKRP Mutant Mice Is Associated with Muscle Regeneration.
    Awano H; Blaeser A; Keramaris E; Xu L; Tucker J; Wu B; Lu P; Lu QL
    Am J Pathol; 2015 Jul; 185(7):2025-37. PubMed ID: 25976249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy.
    Kanagawa M; Toda T
    J Neuromuscul Dis; 2017; 4(4):259-267. PubMed ID: 29081423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies.
    Chan YM; Keramaris-Vrantsis E; Lidov HG; Norton JH; Zinchenko N; Gruber HE; Thresher R; Blake DJ; Ashar J; Rosenfeld J; Lu QL
    Hum Mol Genet; 2010 Oct; 19(20):3995-4006. PubMed ID: 20675713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of glycosylated α-dystroglycan in newborn skeletal and cardiac muscles of fukutin related protein (FKRP) mutant mice.
    Keramaris E; Lu PJ; Tucker J; Lu QL
    Muscle Nerve; 2017 Apr; 55(4):582-590. PubMed ID: 27515093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression.
    Gicquel E; Maizonnier N; Foltz SJ; Martin WJ; Bourg N; Svinartchouk F; Charton K; Beedle AM; Richard I
    Hum Mol Genet; 2017 May; 26(10):1952-1965. PubMed ID: 28334834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions.
    Xu L; Lu PJ; Wang CH; Keramaris E; Qiao C; Xiao B; Blake DJ; Xiao X; Lu QL
    Mol Ther; 2013 Oct; 21(10):1832-40. PubMed ID: 23817215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved efficacy of FKRP AAV gene therapy by combination with ribitol treatment for LGMD2I.
    Cataldi MP; Vannoy CH; Blaeser A; Tucker JD; Leroy V; Rawls R; Killilee J; Holbrook MC; Lu QL
    Mol Ther; 2023 Dec; 31(12):3478-3489. PubMed ID: 37919902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 2I.
    Frattini P; Villa C; De Santis F; Meregalli M; Belicchi M; Erratico S; Bella P; Raimondi MT; Lu Q; Torrente Y
    Hum Mol Genet; 2017 Oct; 26(19):3682-3698. PubMed ID: 28666318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dystroglycanopathy muscles lacking functional glycosylation of alpha-dystroglycan retain regeneration capacity.
    Awano H; Blaeser A; Wu B; Lu P; Keramaris-Vrantsis E; Lu Q
    Neuromuscul Disord; 2015 Jun; 25(6):474-84. PubMed ID: 25937147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein.
    Vannoy CH; Xu L; Keramaris E; Lu P; Xiao X; Lu QL
    Hum Gene Ther Methods; 2014 Jun; 25(3):187-96. PubMed ID: 24635668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell endogenous activities of fukutin and FKRP coexist with the ribitol xylosyltransferase, TMEM5.
    Nishihara R; Kobayashi K; Imae R; Tsumoto H; Manya H; Mizuno M; Kanagawa M; Endo T; Toda T
    Biochem Biophys Res Commun; 2018 Mar; 497(4):1025-1030. PubMed ID: 29477842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan.
    Manya H; Endo T
    Biochim Biophys Acta Gen Subj; 2017 Oct; 1861(10):2462-2472. PubMed ID: 28711406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribitol enhances matriglycan of α-dystroglycan in breast cancer cells without affecting cell growth.
    Lu PJ; Tucker JD; Branch EK; Guo F; Blaeser AR; Lu QL
    Sci Rep; 2020 Mar; 10(1):4935. PubMed ID: 32188898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy.
    Kanagawa M; Nishimoto A; Chiyonobu T; Takeda S; Miyagoe-Suzuki Y; Wang F; Fujikake N; Taniguchi M; Lu Z; Tachikawa M; Nagai Y; Tashiro F; Miyazaki J; Tajima Y; Takeda S; Endo T; Kobayashi K; Campbell KP; Toda T
    Hum Mol Genet; 2009 Feb; 18(4):621-31. PubMed ID: 19017726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression.
    Kanagawa M; Yu CC; Ito C; Fukada S; Hozoji-Inada M; Chiyo T; Kuga A; Matsuo M; Sato K; Yamaguchi M; Ito T; Ohtsuka Y; Katanosaka Y; Miyagoe-Suzuki Y; Naruse K; Kobayashi K; Okada T; Takeda S; Toda T
    Hum Mol Genet; 2013 Aug; 22(15):3003-15. PubMed ID: 23562821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytidine Diphosphate-Ribitol Analysis for Diagnostics and Treatment Monitoring of Cytidine Diphosphate-l-Ribitol Pyrophosphorylase A Muscular Dystrophy.
    van Tol W; van Scherpenzeel M; Alsady M; Riemersma M; Hermans E; Kragt E; Tasca G; Kamsteeg EJ; Pennings M; van Beusekom E; Vermeulen JR; van Bokhoven H; Voermans NC; Willemsen MA; Ashikov A; Lefeber DJ
    Clin Chem; 2019 Oct; 65(10):1295-1306. PubMed ID: 31375477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.