These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30150721)

  • 1. Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot.
    Camenzind LC; Yu L; Stano P; Zimmerman JD; Gossard AC; Loss D; Zumbühl DM
    Nat Commun; 2018 Aug; 9(1):3454. PubMed ID: 30150721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin relaxation in a single-electron graphene quantum dot.
    Banszerus L; Hecker K; Möller S; Icking E; Watanabe K; Taniguchi T; Volk C; Stampfer C
    Nat Commun; 2022 Jun; 13(1):3637. PubMed ID: 35752620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dots and spin qubits in graphene.
    Recher P; Trauzettel B
    Nanotechnology; 2010 Jul; 21(30):302001. PubMed ID: 20603538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A silicon quantum-dot-coupled nuclear spin qubit.
    Hensen B; Wei Huang W; Yang CH; Wai Chan K; Yoneda J; Tanttu T; Hudson FE; Laucht A; Itoh KM; Ladd TD; Morello A; Dzurak AS
    Nat Nanotechnol; 2020 Jan; 15(1):13-17. PubMed ID: 31819245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots.
    Chekhovich EA; Ulhaq A; Zallo E; Ding F; Schmidt OG; Skolnick MS
    Nat Mater; 2017 Oct; 16(10):982-986. PubMed ID: 28783160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots.
    Lawrie WIL; Hendrickx NW; van Riggelen F; Russ M; Petit L; Sammak A; Scappucci G; Veldhorst M
    Nano Lett; 2020 Oct; 20(10):7237-7242. PubMed ID: 32833455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illuminating Ligand Field Contributions to Molecular Qubit Spin Relaxation via
    Kazmierczak NP; Hadt RG
    J Am Chem Soc; 2022 Nov; 144(45):20804-20814. PubMed ID: 36382468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot.
    Wüst G; Munsch M; Maier F; Kuhlmann AV; Ludwig A; Wieck AD; Loss D; Poggio M; Warburton RJ
    Nat Nanotechnol; 2016 Oct; 11(10):885-889. PubMed ID: 27428274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A valley-spin qubit in a carbon nanotube.
    Laird EA; Pei F; Kouwenhoven LP
    Nat Nanotechnol; 2013 Aug; 8(8):565-8. PubMed ID: 23892984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin Lifetime and Charge Noise in Hot Silicon Quantum Dot Qubits.
    Petit L; Boter JM; Eenink HGJ; Droulers G; Tagliaferri MLV; Li R; Franke DP; Singh KJ; Clarke JS; Schouten RN; Dobrovitski VV; Vandersypen LMK; Veldhorst M
    Phys Rev Lett; 2018 Aug; 121(7):076801. PubMed ID: 30169086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropy of spin splitting and spin relaxation in lateral quantum dots.
    Fal'ko VI; Altshuler BL; Tsyplyatyev O
    Phys Rev Lett; 2005 Aug; 95(7):076603. PubMed ID: 16196808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Spin Qubit Candidates Arrayed within Layered Two-Dimensional Polymers.
    Oanta AK; Collins KA; Evans AM; Pratik SM; Hall LA; Strauss MJ; Marder SR; D'Alessandro DM; Rajh T; Freedman DE; Li H; Brédas JL; Sun L; Dichtel WR
    J Am Chem Soc; 2023 Jan; 145(1):689-696. PubMed ID: 36574726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Covalent versus Spin-Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines.
    Follmer AH; Ribson RD; Oyala PH; Chen GY; Hadt RG
    J Phys Chem A; 2020 Nov; 124(44):9252-9260. PubMed ID: 33112149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
    Nichol JM; Harvey SP; Shulman MD; Pal A; Umansky V; Rashba EI; Halperin BI; Yacoby A
    Nat Commun; 2015 Jul; 6():7682. PubMed ID: 26184854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotropic and Anisotropic g-Factor Corrections in GaAs Quantum Dots.
    Camenzind LC; Svab S; Stano P; Yu L; Zimmerman JD; Gossard AC; Loss D; Zumbühl DM
    Phys Rev Lett; 2021 Jul; 127(5):057701. PubMed ID: 34397233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous spin-charge relaxation in double quantum dots.
    Srinivasa V; Nowack KC; Shafiei M; Vandersypen LM; Taylor JM
    Phys Rev Lett; 2013 May; 110(19):196803. PubMed ID: 23705734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs.
    Botzem T; McNeil RP; Mol JM; Schuh D; Bougeard D; Bluhm H
    Nat Commun; 2016 Apr; 7():11170. PubMed ID: 27079269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Ligand Field Symmetry on Molecular Qubit Coherence.
    Kazmierczak NP; Mirzoyan R; Hadt RG
    J Am Chem Soc; 2021 Oct; 143(42):17305-17315. PubMed ID: 34615349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of spin relaxation in two-electron lateral coupled quantum dots.
    Raith M; Stano P; Baruffa F; Fabian J
    Phys Rev Lett; 2012 Jun; 108(24):246602. PubMed ID: 23004302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.