These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30151429)

  • 1. Springtail-inspired superomniphobic surface with extreme pressure resistance.
    Yun GT; Jung WB; Oh MS; Jang GM; Baek J; Kim NI; Im SG; Jung HT
    Sci Adv; 2018 Aug; 4(8):eaat4978. PubMed ID: 30151429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Advanced Superomniphobicity: Hierarchical Insights from Serif-T Nanostructures to Microscale Wrinkles.
    Yun GT; Kim Y; Ahn H; Kim M; Jang GM; Im SG; Jung WB; Jung HT
    ACS Nano; 2024 Feb; ():. PubMed ID: 38315048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Extreme Pressure Resistance to Liquids on a Super-Omniphobic Surface with Armored Reentrants.
    Sun P; Jin Y; Yin Y; Wu C; Song C; Feng Y; Zhou P; Qin X; Niu Y; Liu Q; Zhang J; Wang Z; Hao X
    Small Methods; 2024 Apr; 8(4):e2201602. PubMed ID: 36919581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonfluorinated Superomniphobic Surfaces through Shape-Tunable Mushroom-like Polymeric Micropillar Arrays.
    Kim H; Han H; Lee S; Woo J; Seo J; Lee T
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5484-5491. PubMed ID: 30576594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fresnel Diffraction Strategy Enables the Fabrication of Flexible Superomniphobic Surfaces.
    Zhang Z; Pei G; Zhao K; Pang P; Gao W; Ye T; Ma B; Luo J; Deng J
    Langmuir; 2022 Nov; 38(47):14508-14516. PubMed ID: 36377419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Fabrication of Flexible Bioinspired Superomniphobic Surfaces.
    Zhang Z; Ma B; Ye T; Gao W; Pei G; Luo J; Deng J; Yuan W
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39665-39672. PubMed ID: 35983670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars.
    Arunachalam S; Domingues EM; Das R; Nauruzbayeva J; Buttner U; Syed A; Mishra H
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Liquid Sliding Surfaces with Springtail-Inspired Concave Mushroom-Like Micropillar Arrays.
    Kang SM; Choi JS
    Small; 2020 Jan; 16(3):e1904612. PubMed ID: 31833201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The springtail cuticle as a blueprint for omniphobic surfaces.
    Hensel R; Neinhuis C; Werner C
    Chem Soc Rev; 2016 Jan; 45(2):323-41. PubMed ID: 26239626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sliding droplets on superomniphobic zinc oxide nanostructures.
    Perry G; Coffinier Y; Thomy V; Boukherroub R
    Langmuir; 2012 Jan; 28(1):389-95. PubMed ID: 22053956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Springtail-Inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasi-Doubly Reentrant Structures.
    Dong S; Zhang X; Li Q; Liu C; Ye T; Liu J; Xu H; Zhang X; Liu J; Jiang C; Xue L; Yang S; Xiao X
    Small; 2020 May; 16(19):e2000779. PubMed ID: 32285646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars.
    Choi J; Jo W; Lee SY; Jung YS; Kim SH; Kim HT
    ACS Nano; 2017 Aug; 11(8):7821-7828. PubMed ID: 28715178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating.
    Zhu P; Kong T; Tang X; Wang L
    Nat Commun; 2017 Jun; 8():15823. PubMed ID: 28604698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures.
    Hu S; Reddyhoff T; Li J; Cao X; Shi X; Peng Z; deMello AJ; Dini D
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31310-31319. PubMed ID: 34171192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable and Robust Fabrication Rules for Springtail-Inspired Superomniphobic Surfaces.
    Kang SM; Choi JS; An JH
    ACS Appl Mater Interfaces; 2020 May; 12(18):21120-21126. PubMed ID: 32297728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Condensation-Resistant Omniphobic Surfaces.
    Wilke KL; Preston DJ; Lu Z; Wang EN
    ACS Nano; 2018 Nov; 12(11):11013-11021. PubMed ID: 30299928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Compensating Liquid-Repellent Surfaces with Stratified Morphology.
    Hu S; Cao X; Reddyhoff T; Puhan D; Vladescu SC; Wang Q; Shi X; Peng Z; deMello AJ; Dini D
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4174-4182. PubMed ID: 31889435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.
    Sorvali M; Vuori L; Pudas M; Haapanen J; Mahlberg R; Ronkainen H; Honkanen M; Valden M; Mäkelä JM
    Nanotechnology; 2018 May; 29(18):185708. PubMed ID: 29451126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing omniphobicity by immersion.
    Arunachalam S; Das R; Nauruzbayeva J; Domingues EM; Mishra H
    J Colloid Interface Sci; 2019 Jan; 534():156-162. PubMed ID: 30218988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition.
    Bielinski AR; Boban M; He Y; Kazyak E; Lee DH; Wang C; Tuteja A; Dasgupta NP
    ACS Nano; 2017 Jan; 11(1):478-489. PubMed ID: 28114759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.