BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30151556)

  • 1. Insights into the Populations of Proteolytic and Amino Acid-Fermenting Bacteria from Microbiota Analysis Using In Vitro Enrichment Cultures.
    Shen J; Yu Z; Zhu W
    Curr Microbiol; 2018 Nov; 75(11):1543-1550. PubMed ID: 30151556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein.
    Bento CB; de Azevedo AC; Detmann E; Mantovani HC
    BMC Microbiol; 2015 Feb; 15():28. PubMed ID: 25888186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination.
    Krause DO; Russell JB
    Appl Environ Microbiol; 1996 Mar; 62(3):815-21. PubMed ID: 8975611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen.
    Yang CM; Russell JB
    Appl Environ Microbiol; 1993 Oct; 59(10):3250-4. PubMed ID: 8250552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria.
    Yang CM; Russell JB
    J Anim Sci; 1993 Dec; 71(12):3470-6. PubMed ID: 8294302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid deamination by ruminal Megasphaera elsdenii strains.
    Rychlik JL; LaVera R; Russell JB
    Curr Microbiol; 2002 Nov; 45(5):340-5. PubMed ID: 12232664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. More monensin-sensitive, ammonia-producing bacteria from the rumen.
    Chen G; Russell JB
    Appl Environ Microbiol; 1989 May; 55(5):1052-7. PubMed ID: 2757371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows.
    Schären M; Drong C; Kiri K; Riede S; Gardener M; Meyer U; Hummel J; Urich T; Breves G; Dänicke S
    J Dairy Sci; 2017 Apr; 100(4):2765-2783. PubMed ID: 28161182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen.
    Eschenlauer SC; McKain N; Walker ND; McEwan NR; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2002 Oct; 68(10):4925-31. PubMed ID: 12324340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bovicin HC5 inhibits wasteful amino acid degradation by mixed ruminal bacteria in vitro.
    Lima JR; Ribon Ade O; Russell JB; Mantovani HC
    FEMS Microbiol Lett; 2009 Mar; 292(1):78-84. PubMed ID: 19191869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extracts of Humulus lupulus (hops) and Yucca schidigera applied alone or in combination with monensin on rumen fermentation and microbial populations in vitro.
    Narvaez N; Wang Y; McAllister T
    J Sci Food Agric; 2013 Aug; 93(10):2517-22. PubMed ID: 23483574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of monensin on breakdown of protein by ruminal microorganisms in vitro.
    Whetstone HD; Davis CL; Bryant MP
    J Anim Sci; 1981 Sep; 53(3):803-9. PubMed ID: 7319956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1988 Nov; 54(11):2742-9. PubMed ID: 2975156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Propionibacterium acidipropionici P169 on the rumen and faecal microbiota of beef cattle fed a maize-based finishing diet.
    Azad E; Narvaez N; Derakhshani H; Allazeh AY; Wang Y; McAllister TA; Khafipour E
    Benef Microbes; 2017 Oct; 8(5):785-799. PubMed ID: 28856906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ammonia-hyperproducing bacteria from New Zealand ruminants.
    Attwood GT; Klieve AV; Ouwerkerk D; Patel BK
    Appl Environ Microbiol; 1998 May; 64(5):1796-804. PubMed ID: 9572953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production.
    Russell JB; Strobel HJ; Chen GJ
    Appl Environ Microbiol; 1988 Apr; 54(4):872-7. PubMed ID: 3377500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of monensin and a protonophore on protein degradation, peptide accumulation, and deamination by mixed ruminal microorganisms in vitro.
    Chen GJ; Russell JB
    J Anim Sci; 1991 May; 69(5):2196-203. PubMed ID: 1829725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in ruminal concentrations of microbial ammonia and amino acids due to monensin and time.
    Rodriguez SL; Craig WM; Hembry FG
    J Anim Sci; 1986 Dec; 63(6):1990-5. PubMed ID: 3818471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis.
    Karnati SK; Sylvester JT; Ribeiro CV; Gilligan LE; Firkins JL
    J Dairy Sci; 2009 Aug; 92(8):3849-60. PubMed ID: 19620669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.