These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30151591)

  • 1. Software for Characterizing the Antigenic and Genetic Evolution of Human Influenza Viruses.
    Reimering S; McHardy AC
    Methods Mol Biol; 2018; 1836():551-565. PubMed ID: 30151591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal antigenic prediction of influenza A H3N2 using machine learning.
    Shah SAW; Palomar DP; Barr I; Poon LLM; Quadeer AA; McKay MR
    Nat Commun; 2024 May; 15(1):3833. PubMed ID: 38714654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric Constraints Dominate the Antigenic Evolution of Influenza H3N2 Hemagglutinin.
    Meyer AG; Wilke CO
    PLoS Pathog; 2015 May; 11(5):e1004940. PubMed ID: 26020774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the antigenic evolution of pandemic influenza A (H1N1) pdm09 from 2009 to 2023.
    Cheng P; Zhai K; Han W; Zeng J; Qiu Z; Chen Y; Tang K; Tang J; Long H; Jiang T; Du X
    J Med Virol; 2024 May; 96(5):e29657. PubMed ID: 38727035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MetaFluAD: meta-learning for predicting antigenic distances among influenza viruses.
    Jia Q; Xia Y; Dong F; Li W
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39129362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin.
    Lee JM; Eguia R; Zost SJ; Choudhary S; Wilson PC; Bedford T; Stevens-Ayers T; Boeckh M; Hurt AC; Lakdawala SS; Hensley SE; Bloom JD
    Elife; 2019 Aug; 8():. PubMed ID: 31452511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational analysis of the antigenic properties of haemagglutinin in influenza A H3N2.
    Lees WD; Moss DS; Shepherd AJ
    Bioinformatics; 2010 Jun; 26(11):1403-8. PubMed ID: 20388627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges of Making Effective Influenza Vaccines.
    Gouma S; Anderson EM; Hensley SE
    Annu Rev Virol; 2020 Sep; 7(1):495-512. PubMed ID: 32392457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types.
    Recker M; Pybus OG; Nee S; Gupta S
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7711-6. PubMed ID: 17460037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of antigenicity-altering patches on the major surface protein of human influenza A/H3N2 viruses.
    Kratsch C; Klingen TR; Mümken L; Steinbrück L; McHardy AC
    Virus Evol; 2016 Jan; 2(1):vev025. PubMed ID: 27774294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of competition and mutation in shaping antigenic and genetic diversity in influenza.
    Zinder D; Bedford T; Gupta S; Pascual M
    PLoS Pathog; 2013 Jan; 9(1):e1003104. PubMed ID: 23300455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional Neural Network Based Approach to in Silico Non-Anticipating Prediction of Antigenic Distance for Influenza Virus.
    Forghani M; Khachay M
    Viruses; 2020 Sep; 12(9):. PubMed ID: 32932748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens.
    Yan L; Neher RA; Shraiman BI
    Elife; 2019 Sep; 8():. PubMed ID: 31532393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic processes constrain the within and between host evolution of influenza virus.
    McCrone JT; Woods RJ; Martin ET; Malosh RE; Monto AS; Lauring AS
    Elife; 2018 May; 7():. PubMed ID: 29683424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evolution of influenza viruses among selected countries in Latin America, 2017-2018.
    Leite JA; Resende P; Araya JL; Barrera GB; Baumeister E; Caicedo AB; Coppola L; de Mello WA; de Mora D; Cordeiro Dos Santos M; Fasce R; Fernández J; Goñi N; Martínez IL; Mayhua JO; Motta F; Nuñez MCH; Ojeda J; Ortega MJ; Ospitia E; Paiva TM; Pontoriero A; Porras HB; Quinonez JAD; Ramas V; Ramírez JB; Santos KCO; Siqueira MM; Vàzquez C; Palekar R
    PLoS One; 2020; 15(3):e0227962. PubMed ID: 32155152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asynchrony between virus diversity and antibody selection limits influenza virus evolution.
    Morris DH; Petrova VN; Rossine FW; Parker E; Grenfell BT; Neher RA; Levin SA; Russell CA
    Elife; 2020 Nov; 9():. PubMed ID: 33174838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innate immune evasion strategies of influenza viruses.
    Hale BG; Albrecht RA; García-Sastre A
    Future Microbiol; 2010 Jan; 5(1):23-41. PubMed ID: 20020828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary stability of antigenically escaping viruses.
    Chardès V; Mazzolini A; Mora T; Walczak AM
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2307712120. PubMed ID: 37871216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An atlas of continuous adaptive evolution in endemic human viruses.
    Kistler KE; Bedford T
    Cell Host Microbe; 2023 Nov; 31(11):1898-1909.e3. PubMed ID: 37883977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology.
    Morris DH; Gostic KM; Pompei S; Bedford T; Łuksza M; Neher RA; Grenfell BT; Lässig M; McCauley JW
    Trends Microbiol; 2018 Feb; 26(2):102-118. PubMed ID: 29097090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.