BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30151760)

  • 1. BATCH-GE: Analysis of NGS Data for Genome Editing Assessment.
    Steyaert W; Boel A; Coucke P; Willaert A
    Methods Mol Biol; 2018; 1865():83-90. PubMed ID: 30151760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment.
    Boel A; Steyaert W; De Rocker N; Menten B; Callewaert B; De Paepe A; Coucke P; Willaert A
    Sci Rep; 2016 Jul; 6():30330. PubMed ID: 27461955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPRMatch: An Automatic Calculation and Visualization Tool for High-throughput CRISPR Genome-editing Data Analysis.
    You Q; Zhong Z; Ren Q; Hassan F; Zhang Y; Zhang T
    Int J Biol Sci; 2018; 14(8):858-862. PubMed ID: 29989077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate analysis of genuine CRISPR editing events with ampliCan.
    Labun K; Guo X; Chavez A; Church G; Gagnon JA; Valen E
    Genome Res; 2019 May; 29(5):843-847. PubMed ID: 30850374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GOANA: A Universal High-Throughput Web Service for Assessing and Comparing the Outcome and Efficiency of Genome Editing Experiments.
    Reti D; O'Brien A; Wetzel P; Tay A; Bauer DC; Wilson LOW
    CRISPR J; 2021 Apr; 4(2):243-252. PubMed ID: 33876955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cas-analyzer: an online tool for assessing genome editing results using NGS data.
    Park J; Lim K; Kim JS; Bae S
    Bioinformatics; 2017 Jan; 33(2):286-288. PubMed ID: 27559154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Web-based design and analysis tools for CRISPR base editing.
    Hwang GH; Park J; Lim K; Kim S; Yu J; Yu E; Kim ST; Eils R; Kim JS; Bae S
    BMC Bioinformatics; 2018 Dec; 19(1):542. PubMed ID: 30587106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AlleleProfileR: A versatile tool to identify and profile sequence variants in edited genomes.
    Bruyneel AAN; Colas AR; Karakikes I; Mercola M
    PLoS One; 2019; 14(12):e0226694. PubMed ID: 31877162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 10. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing.
    Sharon E; Chen SA; Khosla NM; Smith JD; Pritchard JK; Fraser HB
    Cell; 2018 Oct; 175(2):544-557.e16. PubMed ID: 30245013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites.
    Cui Y; Yu L
    Parasitol Int; 2016 Dec; 65(6 Pt A):641-644. PubMed ID: 27586395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-DAV: CRISPR NGS data analysis and visualization pipeline.
    Wang X; Tilford C; Neuhaus I; Mintier G; Guo Q; Feder JN; Kirov S
    Bioinformatics; 2017 Dec; 33(23):3811-3812. PubMed ID: 28961906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure.
    Yan Q; Xu K; Xing J; Zhang T; Wang X; Wei Z; Ren C; Liu Z; Shao S; Zhang Z
    Sci Rep; 2016 Dec; 6():38970. PubMed ID: 27941919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9.
    Zhao D; Yuan S; Xiong B; Sun H; Ye L; Li J; Zhang X; Bi C
    Microb Cell Fact; 2016 Dec; 15(1):205. PubMed ID: 27908280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.