These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30151760)

  • 61. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 64. CRISPR-engineered genome editing for the next generation neurological disease modeling.
    Feng W; Liu HK; Kawauchi D
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Feb; 81():459-467. PubMed ID: 28536069
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9.
    Cuculis L; Schroeder CM
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():577-597. PubMed ID: 28489428
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems.
    Liu Q; Wang C; Jiao X; Zhang H; Song L; Li Y; Gao C; Wang K
    Sci China Life Sci; 2019 Jan; 62(1):1-7. PubMed ID: 30446870
    [TBL] [Abstract][Full Text] [Related]  

  • 68. CRISPR/CAS9 targeted CAPTURE of mammalian genomic regions for characterization by NGS.
    Slesarev A; Viswanathan L; Tang Y; Borgschulte T; Achtien K; Razafsky D; Onions D; Chang A; Cote C
    Sci Rep; 2019 Mar; 9(1):3587. PubMed ID: 30837529
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CRIS.py: A Versatile and High-throughput Analysis Program for CRISPR-based Genome Editing.
    Connelly JP; Pruett-Miller SM
    Sci Rep; 2019 Mar; 9(1):4194. PubMed ID: 30862905
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Unbiased Forward Genetic Screening with Chemical Mutagenesis to Uncover Drug-Target Interactions.
    Horn M; Metge F; Denzel MS
    Methods Mol Biol; 2019; 1953():23-31. PubMed ID: 30912013
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tools for experimental and computational analyses of off-target editing by programmable nucleases.
    Bao XR; Pan Y; Lee CM; Davis TH; Bao G
    Nat Protoc; 2021 Jan; 16(1):10-26. PubMed ID: 33288953
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of genome edited cells using CRISPRnano.
    Nguyen T; Ramachandran H; Martins S; Krutmann J; Rossi A
    Nucleic Acids Res; 2022 Jul; 50(W1):W199-W203. PubMed ID: 35640601
    [TBL] [Abstract][Full Text] [Related]  

  • 73. bcSeq: an R package for fast sequence mapping in high-throughput shRNA and CRISPR screens.
    Lin J; Gresham J; Wang T; Kim SY; Alvarez J; Damrauer JS; Floyd S; Granek J; Allen A; Chan C; Xie J; Owzar K
    Bioinformatics; 2018 Oct; 34(20):3581-3583. PubMed ID: 29790906
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-Throughput and Low-Cost Genotyping Method for Plant Genome Editing.
    Liu L; Chen R; Fugina CJ; Siegel B; Jackson D
    Curr Protoc; 2021 Apr; 1(4):e100. PubMed ID: 33826801
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Neuroepigenetic Editing.
    Hamilton PJ; Lim CJ; Nestler EJ; Heller EA
    Methods Mol Biol; 2018; 1767():113-136. PubMed ID: 29524131
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The genomics of schizophrenia: Shortcomings and solutions.
    Zhuo C; Hou W; Li G; Mao F; Li S; Lin X; Jiang D; Xu Y; Tian H; Wang W; Cheng L
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Jul; 93():71-76. PubMed ID: 30904563
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Next-Generation Sequencing Markup Language (NGSML): A Medium for the Representation and Exchange of NGS Data.
    Yu C; Qi X; Yan W; Wu W; Shen B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):576-585. PubMed ID: 35085089
    [TBL] [Abstract][Full Text] [Related]  

  • 78. NGS-Integrator: An efficient tool for combining multiple NGS data tracks using minimum Bayes' factors.
    Wen B; Jung HJ; Chen L; Saeed F; Knepper MA
    BMC Genomics; 2020 Nov; 21(1):806. PubMed ID: 33213365
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Preparation of the standard cell lines for reference mutations in cancer gene-panels by genome editing in HEK 293 T/17 cells.
    Suzuki T; Tsukumo Y; Furihata C; Naito M; Kohara A
    Genes Environ; 2020; 42():8. PubMed ID: 32071619
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Initiative for standardization of the format of the next-generation sequencing (NGS) results.
    Pipan V; Kunej T
    Discoveries (Craiova); 2015 May; 3(2):e44. PubMed ID: 32309567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.