These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30151762)

  • 1. How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique.
    Tadjuidje E; Cha SW
    Methods Mol Biol; 2018; 1865():105-117. PubMed ID: 30151762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0
    Aslan Y; Tadjuidje E; Zorn AM; Cha SW
    Development; 2017 Aug; 144(15):2852-2858. PubMed ID: 28694259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating Nonmosaic Mutants in
    Cha SW
    Cold Spring Harb Protoc; 2022 Jun; 2022(6):Pdb.prot106989. PubMed ID: 34244351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1865():67-82. PubMed ID: 30151759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments.
    Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair.
    Suzuki KT; Sakane Y; Suzuki M; Yamamoto T
    Methods Mol Biol; 2018; 1865():91-103. PubMed ID: 30151761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1865():33-54. PubMed ID: 30151757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer Models in Xenopus tropicalis by CRISPR/Cas9 Mediated Knockout of Tumor Suppressors.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1865():147-161. PubMed ID: 30151765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs.
    Wang X; Zhou J; Cao C; Huang J; Hai T; Wang Y; Zheng Q; Zhang H; Qin G; Miao X; Wang H; Cao S; Zhou Q; Zhao J
    Sci Rep; 2015 Aug; 5():13348. PubMed ID: 26293209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
    Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Targeted Gene Editing in Upland Cotton Using the CRISPR/Cas9 System.
    Zhu S; Yu X; Li Y; Sun Y; Zhu Q; Sun J
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30275376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the
    Zhang S; Zhang R; Gao J; Gu T; Song G; Li W; Li D; Li Y; Li G
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient genome editing by homology-directed repair using Cas9 protein in Ceratitis capitata.
    Aumann RA; Schetelig MF; Häcker I
    Insect Biochem Mol Biol; 2018 Oct; 101():85-93. PubMed ID: 30157456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis.
    Nakayama T; Grainger RM; Cha SW
    Genesis; 2020 Jun; 58(6):e23366. PubMed ID: 32277804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-Targeted CRISPR-Cas9-Mediated Genome Editing of Multiple Homeologs in F
    Corkins ME; DeLay BD; Miller RK
    Cold Spring Harb Protoc; 2022 Mar; 2022(3):. PubMed ID: 34911820
    [No Abstract]   [Full Text] [Related]  

  • 19. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system.
    Wu M; Wei C; Lian Z; Liu R; Zhu C; Wang H; Cao J; Shen Y; Zhao F; Zhang L; Mu Z; Wang Y; Wang X; Du L; Wang C
    Sci Rep; 2016 Apr; 6():24360. PubMed ID: 27063570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology-Directed Repair by CRISPR-Cas9 Mutagenesis in
    Nakayama T; Grainger RM; Cha SW
    Cold Spring Harb Protoc; 2022 Dec; 2022(12):606-615. PubMed ID: 35953242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.