BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30151891)

  • 1. Glucose metabolism and metabolic flexibility in blood platelets.
    Aibibula M; Naseem KM; Sturmey RG
    J Thromb Haemost; 2018 Nov; 16(11):2300-2314. PubMed ID: 30151891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic plasticity in resting and thrombin activated platelets.
    Ravi S; Chacko B; Sawada H; Kramer PA; Johnson MS; Benavides GA; O'Donnell V; Marques MB; Darley-Usmar VM
    PLoS One; 2015; 10(4):e0123597. PubMed ID: 25875958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets.
    Corona de la Peña N; Gutiérrez-Aguilar M; Hernández-Reséndiz I; Marín-Hernández Á; Rodríguez-Enríquez S
    PLoS One; 2017; 12(8):e0182374. PubMed ID: 28817667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid oxidation fuels agonist-induced platelet activation and thrombus formation: Targeting β-oxidation of fatty acids as an effective anti-platelet strategy.
    Kulkarni PP; Ekhlak M; Singh V; Kailashiya V; Singh N; Dash D
    FASEB J; 2023 Feb; 37(2):e22768. PubMed ID: 36624703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate metabolism in human platelets in a low glucose medium under aerobic conditions.
    Niu X; Arthur P; Abas L; Whisson M; Guppy M
    Biochim Biophys Acta; 1996 Oct; 1291(2):97-106. PubMed ID: 8898869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic targeting of platelets to combat thrombosis: dawn of a new paradigm?
    Flora GD; Nayak MK; Ghatge M; Chauhan AK
    Cardiovasc Res; 2023 Nov; 119(15):2497-2507. PubMed ID: 37706546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extramitochondrial energy production in platelets.
    Ravera S; Signorello MG; Bartolucci M; Ferrando S; Manni L; Caicci F; Calzia D; Panfoli I; Morelli A; Leoncini G
    Biol Cell; 2018 May; 110(5):97-108. PubMed ID: 29537672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of 2-tetradecylglycidic acid on rat platelet energy metabolism and aggregation.
    Ishikura H; Takeyama N; Tanaka T
    Biochim Biophys Acta; 1992 Oct; 1128(2-3):193-8. PubMed ID: 1420290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platelet Metabolic Profiling Reveals Glycolytic and 1-Carbon Metabolites Are Essential for GP VI-Stimulated Human Platelets-Brief Report.
    Ghatge M; Flora GD; Nayak MK; Chauhan AK
    Arterioscler Thromb Vasc Biol; 2024 Feb; 44(2):409-416. PubMed ID: 37942614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet glycogenolysis is important for energy production and function.
    Prakhya KS; Vekaria H; Coenen DM; Omali L; Lykins J; Joshi S; Alfar HR; Wang QJ; Sullivan P; Whiteheart SW
    Platelets; 2023 Dec; 34(1):2222184. PubMed ID: 37292023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism in platelets fuels thrombus formation: Halting the thrombosis engine with small-molecule modulators of platelet metabolism.
    Kulkarni PP; Ekhlak M; Dash D
    Metabolism; 2023 Aug; 145():155596. PubMed ID: 37244415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippo pathway inhibition promotes metabolic adaptability and antioxidant response in myoblasts.
    Liu Q; Pan S; Li P; Dixon RAF
    Sci Rep; 2023 Feb; 13(1):2232. PubMed ID: 36755041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis.
    Nayak MK; Dhanesha N; Doddapattar P; Rodriguez O; Sonkar VK; Dayal S; Chauhan AK
    Blood Adv; 2018 Aug; 2(15):2029-2038. PubMed ID: 30108111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival.
    De Oliveira MP; Liesa M
    Cells; 2020 Dec; 9(12):. PubMed ID: 33291682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oxidation of exogenously added organic anions by platelets facilitates maintenance of pH during their storage for transfusion at 22 degrees C.
    Murphy S
    Blood; 1995 Apr; 85(7):1929-35. PubMed ID: 7703496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation.
    Obydennyy SI; Sveshnikova AN; Ataullakhanov FI; Panteleev MA
    J Thromb Haemost; 2016 Sep; 14(9):1867-81. PubMed ID: 27343487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation.
    Fidler TP; Middleton EA; Rowley JW; Boudreau LH; Campbell RA; Souvenir R; Funari T; Tessandier N; Boilard E; Weyrich AS; Abel ED
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1628-1639. PubMed ID: 28663252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protease-activated receptor-induced Akt activation--regulation and possible function.
    Reséndiz JC; Kroll MH; Lassila R
    J Thromb Haemost; 2007 Dec; 5(12):2484-93. PubMed ID: 17883592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolytic and Oxidative Phosphorylation Defects Precede the Development of Senescence in Primary Human Brain Microvascular Endothelial Cells.
    Sakamuri SSVP; Sure VN; Kolli L; Liu N; Evans WR; Sperling JA; Busija DW; Wang X; Lindsey SH; Murfee WL; Mostany R; Katakam PVG
    Geroscience; 2022 Aug; 44(4):1975-1994. PubMed ID: 35378718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.