BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30151928)

  • 1. The N-terminal methyltransferase homologs NRMT1 and NRMT2 exhibit novel regulation of activity through heterotrimer formation.
    Faughn JD; Dean WL; Schaner Tooley CE
    Protein Sci; 2018 Sep; 27(9):1585-1599. PubMed ID: 30151928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NRMT2 is an N-terminal monomethylase that primes for its homologue NRMT1.
    Petkowski JJ; Bonsignore LA; Tooley JG; Wilkey DW; Merchant ML; Macara IG; Schaner Tooley CE
    Biochem J; 2013 Dec; 456(3):453-62. PubMed ID: 24090352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation.
    Shields KM; Tooley JG; Petkowski JJ; Wilkey DW; Garbett NC; Merchant ML; Cheng A; Schaner Tooley CE
    Protein Sci; 2017 Aug; 26(8):1639-1652. PubMed ID: 28556566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel regulation of the transcription factor ZHX2 by N-terminal methylation.
    Conner MM; Parker HV; Falcone DR; Chung G; Schaner Tooley CE
    Transcription; 2022; 13(1-3):1-15. PubMed ID: 35613330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for histone N-terminal methylation by NRMT1.
    Wu R; Yue Y; Zheng X; Li H
    Genes Dev; 2015 Nov; 29(22):2337-42. PubMed ID: 26543159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of the N-terminal methyltransferase NRMT1 increases sensitivity to DNA damage and promotes mammary oncogenesis.
    Bonsignore LA; Butler JS; Klinge CM; Schaner Tooley CE
    Oncotarget; 2015 May; 6(14):12248-63. PubMed ID: 25909287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposing regulation of the Nα-trimethylase METTL11A by its family members METTL11B and METTL13.
    Parker HV; Schaner Tooley CE
    J Biol Chem; 2023 Apr; 299(4):104588. PubMed ID: 36889590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related neurodegeneration and cognitive impairments of NRMT1 knockout mice are preceded by misregulation of RB and abnormal neural stem cell development.
    Catlin JP; Marziali LN; Rein B; Yan Z; Feltri ML; Schaner Tooley CE
    Cell Death Dis; 2021 Oct; 12(11):1014. PubMed ID: 34711807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging.
    Bonsignore LA; Tooley JG; Van Hoose PM; Wang E; Cheng A; Cole MP; Schaner Tooley CE
    Mech Ageing Dev; 2015 Mar; 146-148():42-52. PubMed ID: 25843235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CREB-mediated transcriptional activation of NRMT1 drives muscle differentiation.
    Tooley JG; Catlin JP; Schaner Tooley CE
    Transcription; 2021; 12(2-3):72-88. PubMed ID: 34403304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The N-terminus of Drosophila SU(VAR)3-9 mediates dimerization and regulates its methyltransferase activity.
    Eskeland R; Czermin B; Boeke J; Bonaldi T; Regula JT; Imhof A
    Biochemistry; 2004 Mar; 43(12):3740-9. PubMed ID: 15035645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors.
    Cura V; Marechal N; Troffer-Charlier N; Strub JM; van Haren MJ; Martin NI; Cianférani S; Bonnefond L; Cavarelli J
    FEBS J; 2017 Jan; 284(1):77-96. PubMed ID: 27879050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone methyltransferases in Aspergillus nidulans: evidence for a novel enzyme with a unique substrate specificity.
    Trojer P; Dangl M; Bauer I; Graessle S; Loidl P; Brosch G
    Biochemistry; 2004 Aug; 43(33):10834-43. PubMed ID: 15311944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa.
    Itoh N; Iwata C; Toda H
    BMC Plant Biol; 2016 Aug; 16(1):180. PubMed ID: 27549218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.
    Krishnamohan A; Jackman JE
    Nucleic Acids Res; 2017 Sep; 45(15):9019-9029. PubMed ID: 28911116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational characterization of substrate and product specificities, and functionality of S-adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize.
    Satish M; Nivya MA; Abhishek S; Nakarakanti NK; Shivani D; Vani MV; Rajakumara E
    Proteins; 2018 Jan; 86(1):21-34. PubMed ID: 29024026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns.
    Maury S; Geoffroy P; Legrand M
    Plant Physiol; 1999 Sep; 121(1):215-24. PubMed ID: 10482677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coenzyme M methylase activity of the 480-kilodalton corrinoid protein from Methanosarcina barkeri.
    Tallant TC; Krzycki JA
    J Bacteriol; 1996 Mar; 178(5):1295-301. PubMed ID: 8631705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of DNA methyltransferases.
    Cheng X
    Annu Rev Biophys Biomol Struct; 1995; 24():293-318. PubMed ID: 7663118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, function and physiological role of glycine N-methyltransferase.
    Ogawa H; Gomi T; Takusagawa F; Fujioka M
    Int J Biochem Cell Biol; 1998 Jan; 30(1):13-26. PubMed ID: 9597750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.